• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,054 questions , 2,207 unanswered
5,347 answers , 22,720 comments
1,470 users with positive rep
818 active unimported users
More ...

  Open-closed string correspondence

+ 4 like - 0 dislike

Recently, after many years of searching for the right source, I came across the excellent lecture by Aspinwall, "Some Applications of Commutative Algebra to String Theory", in Eisenbud's Festschrift. He presents a coherent exposition explains branes, TQFTs and all the stuff that you, perhaps, like me, always wanted to know, but were afraid to ask.

In particular, he mentions the boundary conditions of open strings as carrying the structure of triangulated category, such as the familiar derived categories of Lagrangians and coherent sheaves. On the other hand, I found out recently that there is a classical example of triangulated category, that of stable homotopy types (say, like in this excellent exposition by Drozd).

Now, a few years ago, Lipschitz and Sarkar have constructed the stable homotopy type of Khovanov homology, and used a modification of it to, in turn, construct a of refinement of Rasmussen's s-invariant.

Lipshitz and Sarkar, as mentioned above, have already constructed two homotopy types that compute two different version of Khovanov homology, the original and a Lee-Rasmussen deformation. I expect there to be a whole array of such objects, corresponding to different deformations. The morphisms between them I expect to be the Frobenius extensions, as per Khovanov, and each such extension will lead, with any luck, to a triangle.

Finally, the question:

Are there papers in physics that cover triangulated structures on collections of TQFT's, i.e., the correspondence between closed string TQFT's and D-branes?

EDIT: I added a link to the correct paper of Lipshitz and Sarkar (the original link was to a precursor paper where they constructed the Steenrod square on the Khovanov homology).

EDIT 2: I tried to add a little more clarity. Specifically, I am looking for an open string TQFT that assigns a closed string TQFT to a boundary.

EDIT 3 I was going to radically rewrite the question, but I don't know if it's allowed, so here's an edit instead:

Consider a stable category, associated to a given commutative Frobenius algebra $A$. This has a triangulated structure. I would imagine that the subcategory $B$ of commutative Frobenius algebras over $A$ inherits a triangulated structure as well. Does a category like $B$ appear as a category of boundary conditions for an open string TQFT anywhere in the physical literature?

This post imported from StackExchange MathOverflow at 2018-09-28 15:30 (UTC), posted by SE-user user6419
asked May 6, 2018 in Theoretical Physics by user6419 (20 points) [ no revision ]
retagged Sep 28, 2018
Not entirely sure what you’re asking here, but is Lurie’s paper math.harvard.edu/~lurie/papers/cobordism.pdf what you want (even though it’s a math paper)?

This post imported from StackExchange MathOverflow at 2018-09-28 15:31 (UTC), posted by SE-user Aaron Bergman

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights