# About the central charge of 4D extended supersymmetry algebra

+ 2 like - 0 dislike
110 views

The 4D SUSY algebra can be written as

$$\{ Q_{\alpha}^{A} , Q_{\beta}^{B \dagger} \} = 2 m \delta^{AB} \delta_{\alpha \beta} + 2 i Z^{AB} \Gamma^0_{\alpha \beta}, \tag{B.2.37}$$

in a particular reference frame. One can find this formula in the Appendix B, page 448 of Polchinski's String Theory vol.II.

I am confused with the $'i'$ before the central charge. If we do a Hermitian conjugate on both side:

$$\{ Q_{\alpha}^{A \dagger} , Q_{\beta}^{B} \} = 2 m \delta^{AB} \delta_{\alpha \beta} - 2 i Z^{AB} (\Gamma^0_{\alpha \beta})^*$$

and then exchange $(A,\alpha)$ with $(B,\beta)$, the LHS is invariant. But the RHS is

$$2 m \delta^{AB} \delta_{\alpha \beta} - 2 i Z^{BA} (\Gamma^0_{ \beta \alpha})^* = 2 m \delta^{AB} \delta_{\alpha \beta} - 2 i Z^{BA} (\Gamma^0)^{\dagger}_{ \alpha \beta}.$$

Since $Z_{AB}$ is anti-symmetric and $(\Gamma^0)^{\dagger} = -\Gamma^0$, It seems that we have the wrong sign before the central charge term:

$$2 m \delta^{AB} \delta_{\alpha \beta} - 2 i Z^{AB} (\Gamma^0)_{ \alpha \beta}.$$

I think I made a mistake but I can not figure out where is it.

This post imported from StackExchange Physics at 2018-04-18 20:42 (UTC), posted by SE-user JQ Skywalker

edited Apr 18, 2018
Is $Z_{AB}^\dagger=+Z_{AB}$ or $Z_{AB}^\dagger=-Z_{AB}$?

This post imported from StackExchange Physics at 2018-04-18 20:42 (UTC), posted by SE-user AccidentalFourierTransform
$Z_{AB}$ is real and anti-symmetric, therefore $Z_{AB}^{\dagger} = - Z_{AB}$. But I don't think the dagger on the both side will involve the indices $A$ and $\alpha$.

This post imported from StackExchange Physics at 2018-04-18 20:42 (UTC), posted by SE-user JQ Skywalker

+ 2 like - 0 dislike

It is important to remember that operator order gets reversed under Hermitian conjugation: $$(ST)^{\dagger}~=~T^{\dagger}S^{\dagger}.$$ Therefore a Hermitian conjugation on the LHS of eq. (B.2.37) effectively exchanges indices $(A,\alpha)\leftrightarrow (B,\beta)$. The same should happen on the RHS. This is implemented by choosing the central charges $Z_{AB}$ to be anti-Hermitian and the gamma matrix $\Gamma^0_{\alpha\beta}$ to be Hermitian.

This post imported from StackExchange Physics at 2018-04-18 20:42 (UTC), posted by SE-user Qmechanic
answered Apr 10, 2018 by (2,860 points)
I know that $Z_{AB}$ is anti-hermitian but I think the $\Gamma^0$ is also chosen to be anti-hermitian throughout his book, you can check that in (B.1.7a) where $\Gamma^0 = \left[ \begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right] \otimes \left[ \begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right]$ in 4D.

This post imported from StackExchange Physics at 2018-04-18 20:42 (UTC), posted by SE-user JQ Skywalker

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOv$\varnothing$rflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.