Please use comments to point to previous work in this direction, and reviews to referee the accuracy of the paper. Feel free to edit this submission to summarise the paper (just click on edit, your summary will then appear under the horizontal line)

(Is this your paper?)

Abstract:

This paper is one of a series of papers on coherent spaces and their applications, defined in the recent book 'Coherent Quantum Mechanics' by the first author. The paper studies coherent quantization -- the way operators in the quantum space of a coherent space can be studied in terms of objects defined directly on the coherent space. The results may be viewed as a generalization of geometric quantization, including the non-unitary case.

Care has been taken to work with the weakest meaningful topology and to assume as little as possible about the spaces and groups involved. Unlike in geometric quantization, the groups are not assumed to be compact, locally compact, or finite-dimensional. This implies that the setting can be successfully applied to quantum field theory, where the groups involved satisfy none of these properties.

The paper characterizes linear operators acting on the quantum space of a coherent space in terms of their coherent matrix elements. Coherent maps and associated symmetry groups for coherent spaces are introduced, and formulas are derived for the quantization of coherent maps.

The importance of coherent maps for quantum mechanics is due to the fact that there is a quantization operator that associates homomorphically with every coherent map a linear operator from the quantum space into itself. This operator generalizes to general symmetry groups of coherent spaces the second quantization procedure for free classical fields. The latter is obtained by specialization to Klauder spaces, whose quantum spaces are the bosonic Fock spaces. A coordinate-free derivation is given of the basic properties of creation and annihilation operators in Fock spaces.