# Is there an easy way to know the covering group of $O(p,q)$ ?

+ 0 like - 0 dislike
807 views

I would like to know how to find the double cover of say $SO(2,4)$ All references say that it is $SU(2,2)$ Why not $SU(4)$ ? There is something still missing in my understanding.

asked Feb 14, 2018
reshown Feb 15, 2018

Indeed, we should have Spin(2,4) = Spin(6) since Cl(2,4) = Cl(6). I must be missing something too.

I know that these clifford algebras don't match. I might be stupid but I wanted to know whether we can know this quickly from analogy with something like $SL(2,C)=SO(1,3)$ like may be try to find matrices living in SU or SL . Can you get confused reasoning about whether the right covering group of it $SU(1,3)$ or $SU(2.2)$ ?

I think in principle the best approach will be to understand how to go from the Clifford algebra ( which is either a matrix algebra over R, C, or H or a sum of two matrix algebras:  https://en.wikipedia.org/wiki/Classification_of_Clifford_algebras#Real_case ) to its group of units. I'm not sure how the Clifford norm appears in these matrix representations though.

Nevermind, I was briefly confused about centers. The center of SU(p,q) is always Z/p+q.

## Your answer

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:$\varnothing\hbar$ysicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). Please complete the anti-spam verification