• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

160 submissions , 132 unreviewed
4,164 questions , 1,543 unanswered
5,016 answers , 21,273 comments
1,470 users with positive rep
586 active unimported users
More ...

  Significant-loophole-free test of Bell's theorem with entangled photons

+ 0 - 0
+ 0 - 0
Referee this paper: arXiv:1511.03190 by Marissa Giustina, Marijn A. M. Versteegh, (show more)

Please use comments to point to previous work in this direction, and reviews to referee the accuracy of the paper. Feel free to edit this submission to summarise the paper (just click on edit, your summary will then appear under the horizontal line)

(Is this your paper?)

requested Sep 28, 2017 by igael (250 points)
submission not yet summarized

paper authored Nov 10, 2015 to quant-ph by  (no author on PO assigned yet) 
  • [ no revision ]

    abstract : Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bell's inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed \(3.74×10^{-31}\), corresponding to an 11.5 standard deviation effect.

    In the supplemental material located here :

    The angles of the polarizers are

    \(a1 = 94°4\) , \(a2 = 62°4\) , \(b1 = -6°5\) , \(b2 = 25°5\).

    The number of valid trials is \(N = 3,502,784,150\)

    and the relevant counts are

    \(N_{11} = N_{100°9} = 875,683,790; N_{11}^{++} = N_{100°9}^{++} = 141,439\)

    \(N_{12} = N_{68°9} = 875,518,074; N_{12}^{+0} = N_{68°9}^{+0} = 67,941\)

    \(N_{21} = N_{68°9} = 875,882,007; N_{21}^{0+} = N_{68°9}^{0+} = 58,742\)

    \(N_{22} = N_{38°9} = 875,700,279; N_{22}^{++} = N_{38°9}^{++} = 8,392\)

    This study is given as free of the fair-sampling assumption. I was wondering how these values are compatible with this declaration.

    Your Review:

    Please use reviews only to (at least partly) review submissions. To comment, discuss, or ask for clarification, leave a comment instead.
    To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
    Please consult the FAQ for as to how to format your post.
    This is the review box; if you want to write a comment instead, please use the 'add comment' button.
    Live preview (may slow down editor)   Preview
    Your name to display (optional):
    Privacy: Your email address will only be used for sending these notifications.
    Anti-spam verification:
    If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
    Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
    To avoid this verification in future, please log in or register.

    user contributions licensed under cc by-sa 3.0 with attribution required

    Your rights