Spinor Lorentz Transform via Vectors - Cross Product Issue

+ 2 like - 0 dislike
756 views

The Lorentz transformation operator acting on an undotted, i.e. right-handed, spinor can be expressed as $$e^{-\frac{1}{2} \sigma \cdot \mathbf{\phi} + i\frac{1}{2} \sigma \cdot \mathbf{\theta}}.$$

There is a very cool, almost childlike, derivation of this expression in Landau Vol. 4 S. 18, I've never seen anywhere else, deriving $e^{-\frac{1}{2} \sigma \cdot \mathbf{\phi}}$ first, then $e^{ i\frac{1}{2} \sigma \cdot \mathbf{\theta}}$.

When deriving the second term, a cross product arises in the calculation, and I can't make sense of what to do with it. To properly explain the calculation, I have derived $e^{-\frac{1}{2} \sigma \cdot \mathbf{\phi}}$ first to set the notation, and hopefully pique your interest, and then tried to derive the second term. My question will be: can you finish the calculation, and explain the cross product issue?

Given a position vector $$\mathbf{r} = (x,y,z) = (x^1,y^1,z^1),$$ define $$\sigma \cdot \mathbf{r} = \begin{bmatrix} z & x - iy \\ x + iy & - z \end{bmatrix} = x^i \sigma_i = x \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + y \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} + x \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
so that
$$x^i = \frac{1}{2} \mathrm{tr}[(\sigma \cdot \mathbf{r}) \sigma_i],$$
abbreviated as
$$\mathrm{r} = \frac{1}{2} \mathrm{tr}[(\sigma \cdot \mathbf{r}) \sigma].$$

Adding $$tI = x^0 \sigma_0$$ to this gives $$T(t,\mathbf{r}) = T(t,x^1,x^2,x^3) = T(t,x,y,z) = T = x^i \sigma_i = \begin{bmatrix} t + z & x - iy \\ x + iy & t - z \end{bmatrix}$$
so that
$$t = \frac{1}{2} \mathrm{tr}(T)$$ and $$x^i = \frac{1}{2} \mathrm{tr}(T \sigma_i),$$
i.e.
$$\mathbf{r} = \frac{1}{2} \mathrm{tr}(T \sigma).$$

If we perform an infinitesimal Lorentz boost on $(t,\mathbf{r})$ with infinitesimal velocity $\delta \mathbf{V}$ the Lorentz transformation of $(t,\mathbf{r})$ becomes
\begin{align}
t' &= t - \mathbf{r} \cdot \delta \mathbf{V}, \\
\mathbf{r}' &= \mathbf{r} - t \delta \mathbf{V}
\end{align}
and that of $T$ becomes $$T' = BTB^+ = (I + \lambda)T(I + \lambda^+) = T + \lambda T + T \lambda^+$$
so that our goal is to find $B$, i.e. $\lambda$, via
\begin{align}
t' &= t - \mathbf{r} \cdot \delta \mathbf{V} = t - \frac{1}{2} \mathrm{tr}(T \sigma \cdot \delta \mathbf{V}) \\
&= \frac{1}{2}\mathrm{tr}(T') = \frac{1}{2}\mathrm{tr}(BTB^+ ) \frac{1}{2}\mathrm{tr}[(I + \lambda)T(I + \lambda^+)) = t + \frac{1}{2}\mathrm{tr}[T (\lambda + \lambda^+)]
\end{align}
so that $$\lambda + \lambda^+ = - \sigma \cdot \delta \mathbf{V}$$ implies $$\lambda = \lambda^+ = -\frac{1}{2}\sigma \cdot \delta \mathbf{V}.$$
(Can justify this fully by expanding $\mathbf{r}'$ in the same way and solving both equations for $\lambda, \lambda^+$)
giving, for $\delta \mathbf{V} = \mathbf{\phi}$
\begin{align}
B &= I + \lambda = I - \frac{1}{2}\sigma \cdot \mathbf{\phi} \\
&= e^{- \frac{1}{2}\sigma \cdot \mathbf{\phi}},
\end{align}
the first part of our Lorentz transformation operator. Calculating the second part is the issue, hence my question. The cross product complicates things.

Under an infinitesimal rotation $\delta \theta$ we see
\begin{align}
\mathbf{r}' &= \mathbf{r} - \delta \theta \times \mathbf{r} \\
&= \frac{1}{2} \mathrm{tr}(T \sigma) - \delta \theta \times \frac{1}{2} \mathrm{tr}(T \sigma) \\
&=  \frac{1}{2}\mathrm{tr}(T'\sigma) = \frac{1}{2}\mathrm{tr}(BTB^+\sigma) \frac{1}{2}\mathrm{tr}[(I + \lambda)T(I + \lambda^+)\sigma) = \frac{1}{2} \mathrm{tr}(T \sigma) + \frac{1}{2}\mathrm{tr}[ \lambda T \sigma + T \lambda^+  \sigma ]
\end{align}
and solving for $\lambda$ in the equality
$$- \delta \theta \times \frac{1}{2} \mathrm{tr}(T \sigma) = \frac{1}{2}\mathrm{tr}[ \lambda T \sigma + T \lambda^+ \sigma ]$$
is unmanageable to me, but the answer is $$\lambda = \frac{1}{2}i \sigma \cdot \delta \mathbf{\theta}.$$
How do you deal with this cross product and finish the calculation, to get the answer?

Edit: I think I found the answer. Using the relation for the cross product given here:

\begin{align}
X &= \mathbf{\sigma} \cdot \mathbf{x}, \\
Y &= \mathbf{\sigma} \cdot \mathbf{y}, \\
i \mathbf{\sigma} \cdot ( \mathbf{x} \times \mathbf{y}) &= \frac{1}{2}(XY - YX)
\end{align}

I should have written

\begin{align}
\mathbf{r}' &= \mathbf{r} - \delta \theta \times \mathbf{r} \\
&= \frac{1}{2} \mathrm{tr}(T \sigma) - \frac{1}{2} \mathrm{tr}( \delta \theta \times \mathbf{r}) \\
&=  \frac{1}{2}\mathrm{tr}(T'\sigma) = \frac{1}{2}\mathrm{tr}(BTB^+\sigma) \frac{1}{2}\mathrm{tr}[(I + \lambda)T(I + \lambda^+)\sigma) = \frac{1}{2} \mathrm{tr}(T \sigma) + \frac{1}{2}\mathrm{tr}[ \lambda T \sigma + T \lambda^+  \sigma ]
\end{align}

and so I think that settles it, phew!!!

asked Nov 20, 2016
edited Nov 20, 2016

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOverflo$\varnothing$Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). Please complete the anti-spam verification