• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,064 questions , 2,215 unanswered
5,347 answers , 22,734 comments
1,470 users with positive rep
818 active unimported users
More ...

  Super version of a formula for Poisson brackets

+ 2 like - 0 dislike

I am reading a paper Lie superbialgebras and poisson-lie supergroups and trying to figure out how to compute a super Poisson bracket from a super $r$-matrix.

Let $G$ be a Lie supergroup and $\mathfrak{g}$ its Lie superalgebra. The formula (3) on page 158 of the paper Lie superbialgebras and poisson-lie supergroups is \begin{align} \{ \phi, \psi \} = \sum_{\mu, \nu \in B} (-1)^{|\phi||\nu|} r^{\mu \nu}( R_{\mu} \phi R_{\nu} \psi - L_{\mu} \phi L_{\nu} \psi ), \end{align} where $B$ is a homogeneous basis of $\mathfrak{g}$, $r = \sum_{\mu, \nu} r^{\mu \nu} \mu \otimes \nu$. This is the super Poisson bracket of $\mathcal{O}(G)$ which comes from $r$. This formula is very similar to the formula in the end of page 60 of a guide to quantum groups by Chari and Pressley.

Has the following formula \begin{align} \{T \overset{\otimes}{,} T\} = [T \otimes T, r] \end{align} on page 61 of "a guide to quantum groups" been translated to the super case? Are there some references about this? Thank you very much.

This post imported from StackExchange MathOverflow at 2016-10-02 10:49 (UTC), posted by SE-user Jianrong Li

asked Sep 5, 2016 in Theoretical Physics by Jianrong Li (30 points) [ revision history ]
edited Oct 2, 2016 by Dilaton

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights