• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

174 submissions , 137 unreviewed
4,308 questions , 1,640 unanswered
5,089 answers , 21,602 comments
1,470 users with positive rep
635 active unimported users
More ...

  Supertrace of holonomy of commutator

+ 3 like - 0 dislike

On page 47 of Surface operators in four-dimensional topological gauge theory and Langlands duality by Kapustin et al., the following expression is given \begin{equation} \delta\mathcal{N}=d(\omega_\bar{i}\eta^{\bar{i}}+T)+[\mathcal{N},\omega_\bar{i}\eta^{\bar{i}}+T]. \end{equation} It is then claimed that the supertrace of the holonomy of this expression vanishes, i.e., that \begin{equation} STr\textrm{ e}^{\oint\delta\mathcal{N}}=0. \end{equation} My question is, how does on show this?

Using Stoke's theorem, one can show that \begin{equation} STr\textrm{ e}^{\oint\delta\mathcal{N}}=STr\textrm{ e}^{\oint [\mathcal{N},\omega_\bar{i}\eta^{\bar{i}}+T]}. \end{equation} However, I have no idea as to how this expression should vanish.

This post imported from StackExchange Physics at 2016-08-14 09:23 (UTC), posted by SE-user Mtheorist

asked Mar 4, 2016 in Theoretical Physics by Mtheorist (100 points) [ revision history ]
edited Aug 14, 2016 by Dilaton

1 Answer

+ 1 like - 0 dislike

On the same page of the paper, $\mathcal{N}$ is defined as a connection on a bundle $\sigma^* E$. The claim that its BRST variation is $$\delta_{\text{BRST}} \,\mathcal{N} = \mathrm{d} \alpha + [\mathcal{N},\alpha],~~~ (\alpha = \omega \eta + T),$$ means that $\delta_\text{BRST} \mathcal{N}$ is just a gauge transformation of $\mathcal{N}$, $\delta_\alpha \mathcal{N} = \mathrm{d}_\mathcal{N}\, \alpha$, with $\mathrm{d}_\mathcal{N} = \mathrm{d} + [\mathcal{N}, \cdot]$ the gauge-covariant derivative. The trace of the holonomy around a curve $C$ is just a Wilson loop, $$W_C(\mathcal{N}) = \mathrm{str} \,\mathrm{P}\, e^{ \oint_C \mathcal{N}},$$ which is of course a gauge invariant operator. It is therefore also BRST invariant.

This post imported from StackExchange Physics at 2016-08-14 09:23 (UTC), posted by SE-user user81003
answered Mar 4, 2016 by user81003 (130 points) [ no revision ]

Please log in or register to answer this question.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights