# Symmetry of the Polyakov action?

+ 6 like - 0 dislike
259 views

Let us look at the Polyakov action for a string moving in a spacetime with metric $g_{\mu \nu}(X)$:$$S_P = -{1\over{4\pi \alpha'}} \int d^2 \sigma \sqrt{-\gamma} \gamma^{ab} \partial_a X^\mu \partial_b X^\nu g_{\mu\nu}(X) \tag{1}$$ and suppose there exists a Killing vector $k_\mu$ in spacetime satisfying Killing's equation $$\nabla_\mu k_\nu + \nabla_\nu k_\mu = 0.\tag{2}$$ Does this lead to a symmetry of the Polyakov action?

This post imported from StackExchange Physics at 2016-01-17 15:57 (UTC), posted by SE-user Ham

+ 1 like - 0 dislike

1. Perform an infinitesimal variation $$\delta X^{\mu}~=~\varepsilon K^{\mu}(X) \tag{A}$$ of the Polyakov action, where $\varepsilon$ is an infinitesimal parameter. Then $$\partial_a \delta X^{\lambda} ~=~ \varepsilon\partial_a X^{\mu}~\partial_{\mu}K^{\lambda}, \qquad \delta G_{\mu\nu}~=~\varepsilon K^{\lambda}~\partial_{\lambda}G_{\mu\nu}.\tag{B}$$
2. It is easier to use the definition of a Killing vector field $$0~=~({\cal L}_K G)_{\mu\nu}~=~ K^{\lambda}~\partial_{\lambda}G_{\mu\nu} + \partial_{\mu}K^{\lambda}~G_{\lambda\nu}+G_{\mu\lambda}~\partial_{\nu}K^{\lambda} \tag{C}$$ rather than the equivalent eq. (2).
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOve$\varnothing$flowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.