Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

146 submissions , 123 unreviewed
3,953 questions , 1,403 unanswered
4,889 answers , 20,762 comments
1,470 users with positive rep
507 active unimported users
More ...

How to apply the Faddeev-Popov method to a simple integral

+ 5 like - 0 dislike
107 views

Some time ago I was reviewing my knowledge on QFT and I came across the question of Faddeev-Popov ghosts. At the time I was studying thеse matters, I used the book of Faddeev and Slavnov, but the explanation there is on very transparent, specially not for someone like me who was just starting to learn QFT. Therefore, I never understood fully what was meant. To clear my doubts how the mehtod works and what are the Gauge orbits I decided to think how the method will work on a simple toy problem.

The local Gauge transformation in the non-Abelian case acts non-linearly i.e.

$$ F[\mathscr{A}_{\mu}] = g\mathscr{A}_{\mu}g^{-1} + g_{\mu}g_{\mu}^{-1} $$

Since in the generating functional we integrate over the fields,

$$ Z=\int \mathcal{D}\mathscr{A}_{\mu}e^{iS[\mathscr{A}_{\mu}]} $$

double counting is introduced, due to the integration over many equivalent fields generated by the local Gauge transformation. To fix this L.D. Faddeev and V. Popov proposed to introduce the constraint of the Gouge transformation in the form:

$$ \Delta_L(\mathscr{A}) \int \delta(F[\mathscr{A}_{\mu}^{\omega}])d\omega=1 $$ There are different methods how to get $\Delta_L(\mathscr{A})$, but I think that the simplest one is to use just the definition of the delta function. Of course using the properties of the Haar measure, the above expression is Gauge invariant. Say $U(1)$ with $\omega=e^{i\phi}$ this can be checked by using fixed $U'$

$$ \mathcal{D}\omega\omega' = \mathcal{D}\omega, $$

which in my opinion is just the product rule.

Plugging into the generating functional we get

$$ Z=\iint \mathcal{D}\mathscr{A}_{\mu} d \omega \Delta_L(\mathscr{A}) \delta(F[\mathscr{A}_{\mu}^{\omega}])e^{iS[\mathscr{A}_{\mu}]}, $$

which produces a multiplicative volume factor.

Now comes my question, how do we use this on a toy problem. Suppose we were integrating

$$ I=\iint e^{-(x^2+y^2)}dxdy $$

The integration is redundant and by going to cylindrical coordinates $(r,\phi)$ we can easily factor out the $\int d\phi$ part. Let's do this with the Faddeev-Popov method.

Our integral is rotational invariant and the only real contribution comes form moving in the direction $r \to \infty$. I visualise our Gauge transformation as rotation around the origin and I have the feeling that the Gauge orbits are concentric circles. Since we would like to use only non-equivalent orbits we fix the $y$ variable. To do so use the value $y_{\phi} = x\sin\phi+y\cos\phi$

For our unity integral we have $$ 1=\int d\phi\delta(x\sin\phi+y\cos\phi)|\frac{\partial(x\sin\phi+y\cos\phi)}{\partial \phi}| $$ Since we have rotational-invariant integral, let's pick $\phi=0$ this gives

$$ I=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{-(x^2+y^2)}\delta(y_{\phi}) |x| dx dy d \phi $$ $$ I=\int_0^{\infty} e^{-x^2} x dx \times \int_0^{2\pi}d\phi = \pi $$

What we have done above is just rotating, so that the integral is taken along the positive real axis $y_{\phi}=0$. This looks like a complicated way of doing change of variables or introducing constraints.

If the above is correct, what are the gauge orbits in the general case. According to Faddeev himself, his intuition was purely geometrical and the non-Abelian case produces lines that intersect the Gauge orbits at different angles.

Coming back to my example instead of circles $F[\mathscr{A}_{\mu}]$ defines a manifold and the Gauge condition $\partial_{\mu}\mathscr{A}^{\mu}$ gives a cut trough this manifold equivalent to the intersection $y_{\phi}=0$.

I would appreciate your critical review of my question.

This post imported from StackExchange Physics at 2015-12-02 17:57 (UTC), posted by SE-user Alexander Cska
asked Dec 2, 2015 in Theoretical Physics by Alexander Cska (25 points) [ no revision ]
All of this is absolutely correct and is basically how FP gauge fixing is explained in modern field theory/string theory books. Good going if you figured out this picture on your own!

This post imported from StackExchange Physics at 2015-12-02 17:57 (UTC), posted by SE-user childofsaturn

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
$\varnothing\hbar$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...