# Group theory and quantum optics

+ 4 like - 0 dislike
497 views

This is a question about application of group theory to physics.

The starting point is the group $SU(n)$. I have a representation $R$ of $SU(n)$ that takes values on the unitary group on an infinite dimensional separable Hilbert space $H$. This representation can be written as the direct sum of finite-dimensional irreducible representations. Let me write $R(g) = \oplus_j R_j(g)$ for $g \in SU(n)$. The space $H_j$ of each irreducible representation is finite-dimensional. I denote as $P_j$ the projector on $H_j$. For those who are familiar with the subject, what I have in mind is the representation of $SU(n)$ obtained when applying to a set of $n$ bosonic modes the canonical transformations that are linear and preserve the photon-number operator. In this setting, the subspaces $H_j$ are the subspaces with $j$ photons, with $j=0,1,..,\infty$.

My question is the following:

From the representation $R$ given above we can define another representation: $R \otimes R \, : \, g \to R(g) \otimes R(g)$. What is the commutant (also known as centralizer) of the representation $R \otimes R$?

It is easy to see that the commutant of the representation $R$ is given by the projectors $P_j$'s. It is also easy to check that the following operators belong to the commutant of $R \otimes R$:

• $P_i \otimes P_j$, for $i,j=0,1,...,\infty$

• $S_{jj}$

where $S_{jj}$ is the "swap" operator in the subspace $H_j \otimes H_j$. I wonder if there are other operators in the commutant. How can I check it?

Thanks a lot and please accept my apologies if my notation is not very clear.

This post imported from StackExchange Physics at 2015-11-02 22:08 (UTC), posted by SE-user Cosmo Lupo

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:$\varnothing\hbar$ysicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.