• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

191 submissions , 151 unreviewed
4,796 questions , 1,987 unanswered
5,288 answers , 22,473 comments
1,470 users with positive rep
774 active unimported users
More ...

  Switch from the position representation to the momentum representation

+ 2 like - 1 dislike

If we use Fourier Transform, we can switch from the position representation to the momentum representation, like the following equation

\(\phi(p)=\frac{1}{\sqrt{2\pi\hbar}}\int \psi(x)e^{-ipx/\hbar}dx\)

here comes the problem, if we use dirac notation we can see it is the inverse Fourier Transform we use to switch into the momentum representation

because of \(\langle x|p\rangle=\frac{1}{\sqrt{2\pi \hbar}}e^{\frac{i}{\hbar}px}\),we can get \(\begin{split} |p\rangle=&|x\rangle\langle x|p\rangle=\frac{1}{\sqrt{2\pi \hbar}}e^{\frac{i}{\hbar}px}|x\rangle=\mathscr{F} ^{-1}|x\rangle\\ &\mathscr{F} ^{-1}=\mathscr{F} ^{-1}|x\rangle\langle x|=|p\rangle\langle x| \end{split}\)

This is used in one published paper. title:" A finite-dimensional quantum model for the stock market" author:Liviu-Adrian Cotfas, page 7, formula 32

also how can I get the following relation satisfied by  the position and momentum operators ? 

\(\hat{p}=\mathscr{F} ^{-1} \hat{x} \mathscr{F}\)

many thanks!

asked Oct 26, 2015 in Theoretical Physics by bob.zhang (5 points) [ revision history ]
recategorized Oct 26, 2015 by dimension10

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights