Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

146 submissions , 123 unreviewed
3,953 questions , 1,403 unanswered
4,889 answers , 20,762 comments
1,470 users with positive rep
507 active unimported users
More ...

Mathieu-like equation analysis

+ 5 like - 0 dislike
250 views

Recently I've got Mathieu-like equation (it describes dynamics of vector-potential in presense of pseudo-scalar field):

$$
\tag 1 \frac{d^{2}A_{k}(\tau )}{d \tau} + \left(B_{k}(\tau ) - 2q_{k}(\tau )cos\left( 2\tau \right) \right)A_{k}(\tau ) = 0, \quad B_{k} = c + \frac{k^{2}}{8 \tau}, \quad q = \frac{Dk}{\tau^{\frac{5}{4}}},
$$

This is Mathieu-like equation, but with time-dependent coefficients. I need to analyze it on instabilities (exponentially growing solutions), but I don't know how to do it. Can you give me advise or literature sources, where I can reed about analysis of Eqs. like $(1)$?

asked Sep 5, 2015 in Mathematics by NAME_XXX (1,020 points) [ revision history ]
recategorized Sep 9, 2015 by Dilaton

1 Answer

+ 5 like - 0 dislike

One possible approximation is as follows.  When  $\tau$ tends to infinity, the original equation is reduced to

$${\frac {d^{2}}{d{\tau}^{2}}}A \left( \tau \right) + \left( c+{
\frac {{k}^{2}}{8\tau}} \right) A \left( \tau \right) =0$$

and the corresponding analytical solution is

$$A \left( \tau \right) =C_{1}
{{\rm \bf M}\left({\frac {-i{k}^{2}}{16\sqrt {c}}},\frac{1}{2},\,2\,i\sqrt {c}\tau\right)}
+C_{2}
{{\rm \bf W}\left({\frac {-i{k}^{2}}{16\sqrt {c}}},\frac{1}{2},2\,i\sqrt {c}\tau\right)}$$

where $M$ is the Whittaker $M$ function  and $W$ is the Whittaker $W$ function.

Making the change $c = -a^2$  and $a = -b$ we obtain

$$A \left( \tau \right) =C_{1}
{{\rm \bf M}\left({\frac {{k}^{2}}{16b}},\frac{1}{2} ,\,2\,b\tau\right)}+
C_{2}
{{\rm \bf W}\left({\frac {{k}^{2}}{16b}},\frac{1}{2},    \,2\,b\tau\right)}$$

Then for $k>0$ and $b>0$, the solution

$$A \left( \tau \right) =C_{1}
{{\rm \bf M}\left({\frac {{k}^{2}}{16b}},\frac{1}{2} ,\,2\,b\tau\right)}$$

gives a exponentially growing solution; and

$$A \left( \tau \right) =C_{2}
{{\rm \bf W}\left({\frac {{k}^{2}}{16b}},\frac{1}{2},    \,2\,b\tau\right)}$$

gives a exponential decaying solution.

answered Sep 7, 2015 by juancho (860 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\varnothing$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...