• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

204 submissions , 162 unreviewed
5,030 questions , 2,184 unanswered
5,344 answers , 22,705 comments
1,470 users with positive rep
816 active unimported users
More ...

  Confusing "Fourier coefficients" to represent 2d spinors in the helicity spinor formalism

+ 0 like - 0 dislike

Using the following notation (in the spin helicity formalism) when represnting energy-momentum 4-vectors as bispinors

\[\lambda^{\alpha} = p\rangle, \quad \lambda_{\alpha} = \langle p, \quad \tilde{\lambda}_{\dot{\alpha}} = p], \quad \tilde{\lambda}^{\dot{\alpha}} = [p \]

such that

\[p^{\alpha\dot{\alpha}} = p\rangle[p, \quad p_{\alpha\dot{\alpha}} = p]\langle p\]

a two-dimensional spinor $1\rangle$ can be represented as a sum of two other spinors two-dimensional  $2\rangle$ and $3\rangle$ as

\[1\rangle = \frac{\langle1 3 \rangle}{\langle23\rangle} 2\rangle - \frac{\langle1 2 \rangle}{\langle23\rangle} 3\rangle\]

I dont understand the "Fourier coefficients" in this this case, as I would rather have expected them to be $\frac{\langle 12 \rangle}{\langle 11 \rangle}$ to project on the base spinor $2\rangle$ and $\frac{\langle 13 \rangle}{\langle 11 \rangle}$ to project on the base spinor $3 \rangle$.

Can anybody explain what is going on here? Generally, to me this notation is very confusing and not well enough explained in the source I am reading this from ...

asked Jul 17, 2015 in Chat by anonymous [ revision history ]
edited Jul 17, 2015

The notation is strange (and the formula you cite seems simply wrong).

If I find a paper confusing to read I usually try to read the same material from another more readable source. (Often I read several related papers or books in parallel.) One can usually find the same stuff treated in multiple places, except when the material is very new or very specialized.

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights