Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

145 submissions , 122 unreviewed
3,930 questions , 1,398 unanswered
4,851 answers , 20,616 comments
1,470 users with positive rep
501 active unimported users
More ...

Effect of orbifolding on form fields

+ 3 like - 0 dislike
78 views

A paper by Lalak et al, entitled "Soliton Solutions of M-theory on an orbifold", considers the brane solutions of 11 dimensional supergravity on a space of the form $R^{10} \times S^1/\mathbb{Z}_2$.

If $x^{11}$ is the orbifolded coordinate, such that $x^{11} \in [-\pi \rho, \pi \rho]$ and one identifies $x^{11} \rightarrow -x^{11}$, then essentially there are two 10 dimensional hyperplanes at $x^{11} = 0$ and $x^{11} = \pi\rho$.

Suppose $A, B, \ldots$ denote 10 dimensional indices, and the fields of 11D supergravity are: the metric $g$, the 3-form tensor field $C_{(3)}$, and the gravitino.

Then the paper states that the following conditions must be imposed on the metric and the gauge fields and the field strength, so that the solutions to the equations of motion are the ones that respect the $\mathbb{Z}_2$ orbifold symmetry.

$$g_{AB}(x^{11}) = g_{AB}(-x^{11})$$ $$G_{ABCD}(x^{11}) = -G_{ABCD}(-x^{11})$$ $$g_{A11}(x^{11}) = -g_{A11}(-x^{11})$$ $$G_{11BCD}(x^{11}) = G_{11BCD}(-x^{11})$$ $$g_{11,11}(x^{11}) = g_{11,11}(-x^{11})$$ $$C_{ABC}(x^{11}) = -C_{ABC}(-x^{11})$$ $$C_{11BC}(x^{11}) = C_{11BC}(-x^{11})$$

The constraints on the form fields should follow from the invariance of the Chern-Simons action under orbifolding, but what is the exact argument?


This post imported from StackExchange Physics at 2015-07-07 10:59 (UTC), posted by SE-user leastaction

asked Jul 4, 2015 in Theoretical Physics by leastaction (425 points) [ revision history ]
edited Aug 14, 2015 by leastaction

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOverfl$\varnothing$w
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...