Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

145 submissions , 122 unreviewed
3,930 questions , 1,398 unanswered
4,847 answers , 20,601 comments
1,470 users with positive rep
501 active unimported users
More ...

String theory $bc$ system CFT

+ 1 like - 0 dislike
262 views

$bc$ CFT is an example of free-field CFTs. action is

$$S = \frac{1}{2\pi} \int d^2 z b \bar{\partial} c$$

How can we obtain equation of motion? Polchinski-volume 1-page 50 writes that

$$\bar{\partial}c(z) = \bar{\partial}b(z)=0$$, $$ \bar{\partial} b(z) c(0) = 2\pi \delta^2 (z,\bar{z})$$

If this is true so the action will become zero.

This post imported from StackExchange Physics at 2015-04-28 15:20 (UTC), posted by SE-user farhad
asked Apr 28, 2015 in Theoretical Physics by farhad (5 points) [ no revision ]
retagged Apr 28, 2015
I'm curious why you are reading about CFT without knowing about the Euler-Lagrange equations.

This post imported from StackExchange Physics at 2015-04-28 15:20 (UTC), posted by SE-user Danu

1 Answer

+ 3 like - 0 dislike

First of all, the variation of the action produces the equations of motion. Inserting the solution of the equations of motion into the action simple provides you with the value of the action when evaluated on the solution. There's no problem with it being zero. However, when you do this, you should always worry about boundary terms, these are irrelevant for the equations of motion, but they do affect the value of the action when evaluated on a solution (i.e. on-shell).

Secondly, to derive the equations of motion, take the usual variation of the action:

$$ 2\pi \delta S = \int d^2z \left( \delta b \bar{\partial} c + b \bar{\partial} \delta c \right) = \int d^2 z \left( \delta b \bar{\partial} c - \left(\bar{\partial} b \right) \delta c \right),$$

where in the second line we have integrated by parts. Therefore the variation $\delta S/\delta b = 0$ leads to the equation $\bar{\partial} c = 0$, and the variation $\delta S /\delta c = 0$ leads to $\bar{\partial} b = 0.$

The last equation you write is not an equation of motion. The $\delta$ function is just the usual contact term.

This post imported from StackExchange Physics at 2015-04-28 15:20 (UTC), posted by SE-user Surgical Commander
answered Apr 28, 2015 by Surgical Commander (155 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysics$\varnothing$verflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...