Please use comments to point to previous work in this direction, and reviews to referee the accuracy of the paper. Feel free to edit this submission to summarise the paper (just click on edit, your summary will then appear under the horizontal line)

(Is this your paper?)

Abstract: In large eddy simulations, the Reynolds averages of nonlinear terms are not directly computable in terms of the resolved variables and require a closure hypothesis or model, known as a subgrid scale term. Inspired by the renormalization group (RNG), we introduce an expansion for the unclosed terms, carried out explicitly to all orders. In leading order, this expansion defines subgrid scale unclosed terms, which we relate to the dynamic subgrid scale closure models. The expansion, which generalizes the Leonard stress for closur e analysis, suggests a systematic higher order determination of the model coefficients. The RNG point of view sheds light on the nonuniqueness of the i nfinite Reynolds number limit. For the mixing of N species, we see an N+1 parameter family of infinite Reynolds number solutions labeled by dimensionless parameters of the limiting Euler equations, in a manner intrinsic to the RNG itself. Large eddy simulations, with their Leonard stress and dynamic subgrid models, break this nonuniqueness and predict unique model coefficients on the basis of theory. In this sense large eddy simulations go beyond the RNG methodology, which does not ingeneral predict model coefficients.