# Represent a square-root of determinant by Grassmann numbers

+ 3 like - 0 dislike
504 views

I am thinking about the representation of $\sqrt{\det A}$ for a Matrix $A$ . Since it is known that for the Grassmann numbers $\eta, \eta '$ the following relation holds: $$\int \int d \eta d \eta' \exp\left[\eta'^T A \eta\right] = \det A$$ However, if a square root is applied on this determinant, there must be used another grassmann integral representation. I am thinking about the following integral:

$$\int \int \int d\eta d\eta' dp \exp\left[\eta'^T A \eta + p^T A p\right] = \det A (\det A)^{-1/2}$$ Here, $p$ is a vector of ordinary commutative (complex) numbers and Fubini's Theorem is used. Am I right with my calculations (even if $A$ is a functional matrix)?

Are there other Grassmann (or more general hypercomplex number) representations of $\sqrt{\det A}$?

This post imported from StackExchange Mathematics at 2015-02-07 08:27 (UTC), posted by SE-user kryomaxim

+ 2 like - 0 dislike

I) We will assume that the real $n\times n$ matrix $A$ is not necessary symmetric. Therefore the Bosonic Gaussian integral in OP's last formula should read

$$\int_{\mathbb{R}^n} \! d^nx~ \exp \left[-\frac{1}{2}x^i A_{ij} ~x^j\right] ~=~\int_{\mathbb{R}^n} \! d^nx~ \exp \left[-\frac{1}{4}x^i (A+A^T)_{ij} ~x^j\right] ~=~\sqrt{\frac{(2\pi)^n}{\det(\frac{A+A^T}{2})}},\tag{1}$$ where we assume that the symmetric part of the matrix $A$ is positive definite. Hence OP's last formula is basically an integral representation for

$$\frac{\det(A)}{\sqrt{\det(\frac{A+A^T}{2})}}.\tag{2}$$

II) OP may also be interested in the Grassmann integral representation of the Pfaffian

$$\tag{3} {\rm pf}(A) ~\propto ~\int \! d^n\theta~ \exp \left[\frac{1}{2}\theta^i A_{ij} ~\theta^j\right]~=~\int \! d^n\theta ~\exp \left[\frac{1}{4}\theta^i (A-A^T)_{ij} ~\theta^j\right],$$

where we leave it as an exercise to the reader to fix the correct normalization factor in eq. (3). In the second equality we have used that the Grassmann-numbers anticommute $\theta^i\theta^j~=~-\theta^j\theta^i.$

If we use the integral representation (3) as a definition, then the Pfaffian ${\rm pf}(A)$ only depends on the antisymmetric part of the $n\times n$ matrix $A$. Let us therefore assume that the matrix $A$ is antisymmetric from now on. One may then prove that the square of the Pfaffian is the determinant:

$$\tag{4} {\rm pf}(A)^2~=~\det(A).$$

This post imported from StackExchange Mathematics at 2015-02-07 08:27 (UTC), posted by SE-user Qmechanic
answered Feb 3, 2015 by (2,860 points)
I know the relation with the Pfaffian if A is an antisymmetric matrix. However, I am using a general matrix A in my question; it also can be symmetric or neither symmetric nor antisymmetric or even a functional matrix. Is my above formula right?

This post imported from StackExchange Mathematics at 2015-02-07 08:27 (UTC), posted by SE-user kryomaxim
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOv$\varnothing$rflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.