• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,064 questions , 2,215 unanswered
5,347 answers , 22,743 comments
1,470 users with positive rep
818 active unimported users
More ...

  Chern-Simons theory

+ 9 like - 0 dislike

In Witten's paper on QFT and the Jones poly, he quantizes the Chern-Simons Lagrangian on $\Sigma\times \mathbb{R}^1$ for two case: (1) $\Sigma$ has no marked points (i.e., no Wilson loops) and (2) $\Sigma$ has marked points and each point has attached a representation of the gauge group. In case (1), Witten shows that the vector space should be the space of homolorphic sections of a determinant line bundle over the moduli space of flat connections. For the second case he states that the vector space should be the $G$-invariant subspace of the tensor product of all the representations associated to the marked points; by this I mean, if $\Sigma$ has $r$ marked points and each point has a rep $R_i$ then the quantum Hilbert space is $(\bigotimes_{i=1}^r R_i)^G$.

Does anyone know how to intereprete this second case in terms of sections of some bundle? I mean, shouldn't the second case reduce to the first when you remove the marked points? Also, Witten states, immediately following case (2), that in the presence of no marked points the quantum Hilbet space is 1-dimensional. How can one see that from the formula for the quantum Hilbert space, $(\bigotimes_{i=1}^r R_i)^G$?

This post has been migrated from (A51.SE)
asked Oct 15, 2011 in Theoretical Physics by klw1026 (120 points) [ no revision ]
retagged Mar 24, 2014 by dimension10
quick reply on the last bit: when r=0 then the tensor product or r representations is -- essentially by definition of tensor product -- the trivial 1-dimensional representation, because that is the tensor unit in the category of representations. Since every element in the trivial representation is invariant, the passage to G-invariants does not change this statement, and hence for r = 0 that formula yields the 1-dimensional vector space.

This post has been migrated from (A51.SE)
Thanks Urs! That solves one of my problems!

This post has been migrated from (A51.SE)

1 Answer

+ 12 like - 0 dislike

There are two ways to think of the Hilbert space as the space of sections of a line bundle.

First, the exponentiated Chern-Simons action on a manifold $\Sigma\times[0,1]$ is a section of the determinant line bundle $\mathcal{L}_\Sigma$ on the space of flat connections on $\Sigma$. Moreover, Wilson loops (which can be thought of as a 1d TFT) contribute $R_i$ each. So, the Hilbert space (before remembering gauge invariance) is $\Gamma(\mathcal{L}_\Sigma^k)\otimes\bigotimes_i R_i$. Now, if $\Sigma = S^2$, which is simply-connected, the space of flat connections is a point, so $\Gamma(\mathcal{L}_\Sigma^k)=\mathbf{C}$. Finally, gauge invariance picks out the $G$-invariants in $\bigotimes_i R_i$.

Note, that the Hilbert space for a non-simply-connected $\Sigma$ is nontrivial even without the punctures.

Another way to think of this Hilbert space is to recall the 2d CFT <-> 3d TFT correspondence. The idea here is the following. Correlation functions of a 2d CFT live in a certain bundle over the moduli space of complex curves $M_{g,n}$ called the bundle of conformal blocks. The Knizhnik-Zamolodchikov equations on correlation functions correspond to a (projectively) flat connection on this bundle. So, a 2d CFT associates global sections of this bundle to a topological surface $\Sigma$, this is the Hilbert space in a 3d TFT. In the case of the Chern-Simons theory, the associated 2d CFT is the Wess-Zumino-Witten model.

A down-to-earth description can be found in

S. Elitzur, G. Moore, A. Schwimmer, N. Seiberg, Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory, Nucl Phys B326 (1989), 108.

Mathematically, this correspondence is an equivalence between modular functors (as defined by Segal in The definition of conformal field theory) and modular tensor categories which give rise to 3d TFTs (due to Reshetikhin and Turaev).

All of that is discussed in an excellent book Lectures on tensor categories and modular functors by Bakalov and Kirillov.

This post has been migrated from (A51.SE)
answered Oct 15, 2011 by Pavel Safronov (1,120 points) [ no revision ]
can you pls elaborate on what is the CFT - TFT correspondence and/or provide a ref? Thx!

This post has been migrated from (A51.SE)
I expanded the answer a little bit. The main reference is the book by Bakalov and Kirillov.

This post has been migrated from (A51.SE)

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights