# Field renormalization of scalar Yang-Mills

+ 2 like - 0 dislike
439 views

In most books, one can find the field renormalization $Z_3$ in Yang-Mills with fermionic matter in the fundamental. In the $\overline{MS}$ scheme, tt is given by $$Z_3 = 1 + \frac{g^2}{16\pi^2 \epsilon} \left[ \frac{10}{3} T_A - \frac{8}{3} n_F T_F \right] + {\cal O}(g^3)$$ One often writes $\delta_3 = Z_3 - 1$.

This formula can be found in

1. Eq. (73.33) of Srednicki.
2. Eq. (26.83) of Matt Schwartz' book.
3. Eq. (16.74) of P&S etc.

However, I can't find any reference that lists how this result is modified if there's scalar matter present. I've already computed it and I get $$Z_3 = 1 + \frac{g^2}{16\pi^2 \epsilon} \left[ \frac{10}{3} T_A - \frac{8}{3} n_F T_F - \frac{2}{3} n_S T_F \right] + {\cal O}(g^3)$$ Is this correct?

In particular, I'm really interested in computing ALL the counterterms of Yang-Mills in the presence of scalar matter. Is there any reference out there that already does that so I can match my results?

This post imported from StackExchange Physics at 2015-01-23 12:48 (UTC), posted by SE-user Prahar
retagged Jan 23, 2015
I don't think "most books" have the wavefunctions renormalization correction. Maybe "most introductory QFT books", haha.

This post imported from StackExchange Physics at 2015-01-23 12:48 (UTC), posted by SE-user JeffDror
@JeffDror - haha! of course. but since I mostly end up reading QFT books anyway, "most books" for me means exactly that

This post imported from StackExchange Physics at 2015-01-23 12:48 (UTC), posted by SE-user Prahar
Also to partially answer your question. Any book with a section on GUTs should provide the correct formula, though I've never seen a reference actually derive it in full.

This post imported from StackExchange Physics at 2015-01-23 12:48 (UTC), posted by SE-user JeffDror

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ys$\varnothing$csOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.