• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

202 submissions , 160 unreviewed
4,981 questions , 2,140 unanswered
5,340 answers , 22,632 comments
1,470 users with positive rep
813 active unimported users
More ...

  The spin and weight of a primary field in CFT

+ 3 like - 0 dislike

A primary field in Conformal Field Theory transforms as $$\phi (z,\bar{z}) =\left(\frac{dz}{dz'} \right)^h \left(\frac{d\bar{z}}{d\bar{z}'} \right)^\bar{h}\phi (z',\bar{z}') $$ under a conformal transformation.

I read in chapter 2 page 41 in Strings, Conformal Fields and M-theory by M.Kaku that $h+\bar{h}$ is called a conformal weight and $h-\bar{h}$ a conformal spin.

What is the motivation, especially for the spin-one, for these names?

This post imported from StackExchange Physics at 2014-11-28 20:52 (UTC), posted by SE-user Anne O'Nyme
asked Nov 28, 2014 in Theoretical Physics by Anne O'Nyme (170 points) [ no revision ]

1 Answer

+ 4 like - 0 dislike

Both $h$ and $\tilde{h}$ are usually called weights. Their sum, $\Delta=h+\tilde{h}$ is the (scaling) dimension of the operator, while the difference, $s=h-\tilde{h}$ is called the spin. This is due to their association with scale transformations (dilatations) and rotations, respectively. To see this, note that the dilatation operator is given by $D=z\partial+\bar{z}\bar{\partial}$ and the rotation operator by $L=z\partial-\bar{z}\bar{\partial}$. The eigenvalues of a primary under these transformations are given by its scaling dimension $\Delta$ and its spin $s$.

This post imported from StackExchange Physics at 2014-11-28 20:52 (UTC), posted by SE-user Frederic Brünner
answered Nov 28, 2014 by Frederic Brünner (1,130 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights