• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,054 questions , 2,207 unanswered
5,345 answers , 22,719 comments
1,470 users with positive rep
818 active unimported users
More ...

  A technical question in Feix's construction of hyperkahler metric on cotangent bundles

+ 3 like - 0 dislike

I am now reading Feix's paper Hyperkahler metrics on cotangent bundles and I have a technical question to ask.

In his paper, for an analytic Kähler manifold $(X,J,\omega)$, Feix considered its complexification $X^c$ which in my understanding can be thought of as a neighborhood of the diagonal in $X\times\bar{X}$, where $\bar{X}$ is the complex manifold $X$ with complex structure $-J$. One can extend $\omega$ analytically to a holomorphic symplectic form $\omega^c$ on $X^c$. This $\omega^c$ determines two natural holomorphic Lagrangian foliations $L_+$ and $L_-$. Let $z_i$ and $z'_j$ be local holomorphic coordinates of $X$ and $\bar{X}$ respectively, then the leaves of $L_+$ and $L_-$ are given by $z_i\equiv const$ and $z'_j\equiv const$.

As the diagonal intersects each leaf at exactly one point, one may identify the space of leaves of $L_+$ with $X$ and the space of leaves of $L_-$ with $\bar{X}$ respectively.

From now on let us focus on $L_+$ exclusively. By shrinking $X^c$ if necessary, one may assume that $\Lambda_x$ is simply connected for any $x\in X=$ "space of leaves of $L_+$", where $\Lambda_x$ is the leaf corresponding to $x$. As a consequence of Lagrangian foliation, each $\Lambda_x$ has a natural affine structure, so it makes sense to write $V_x$ to be the space of affine functions on $\Lambda_x$. By 1-connectedness of $\Lambda_x$, each $V_x$ is a vector space of complex dimension $n+1$, where $n$ is the complex dimension of $X$. These $V_x$ patch up to a complex vector bundle $V\to X$.

Feix claims without further explanation that this bundle is holomorphic. I really would like to know the description of the holomorphic structure here. It occurs to me that the most natural frames one can think of actually have anti-holomorphic transition functions as follows:

Let $z_i,z'_j$ be local coordinates for $X^c$, the leaves of $L_+$ are $z_i\equiv const$. Fix a leaf $\Lambda_x$, it intersects the diagonal at the point whose coordinate is $z=x,z'=\bar{x}$. One can find parallel 1-forms $\theta_i$ on $\Lambda_x$ by parallel transport with respect to the flat connection with initial value specified by $\theta_i|_{(x,\bar{x})}=\textrm{d}z'_i|_{(x,\bar{x})}$. These $\theta_i$ must be a closed form and their primitives $f_i$ along with the constant function 1 form a basis of $V_x$. However, if you work with this particular frame, then under holomorphic coordinate change of $X$, the transition matrix of these frame depends anti-holomorphically on $X$.

Surely one can switch $L_+$ and $L_-$ to solve the holomorphicity problem here. But I think a bigger trouble is then introduced since in that case the map $\phi$ defined by Feix loses its holomorphicity.

Thank you!

This post imported from StackExchange MathOverflow at 2014-11-11 12:31 (UTC), posted by SE-user Piojo
asked Nov 4, 2014 in Mathematics by Piojo (20 points) [ no revision ]
retagged Nov 11, 2014

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights