Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

146 submissions , 123 unreviewed
3,961 questions , 1,408 unanswered
4,890 answers , 20,766 comments
1,470 users with positive rep
506 active unimported users
More ...

State of the art of BPS and Donaldson-Thomas invariants for toric Calabi-Yau threefolds

+ 6 like - 0 dislike
252 views

I am trying to understand what has been done with regards to computing BPS invariants and Donaldson-Thomas type invariants of Calabi-Yau threefolds. To make the question more focused, let's say that I am specifically looking at toric Calabi-Yau threefolds for which the relevant data can be described by a quiver (possibly with a superpotential). It seems that there are several different methods that have been employed, but I am having a difficult time sorting out which methods have been found to work in what scenarios. For a given method, I'd appreciate an answer to the following related questions:

  • In what chambers of the Kähler moduli space can this method be employed?
  • What manifolds or type(s) of manifolds has this method been used on?
  • What types of invariants can this method compute? By that I mean, is it only good for numerical Donaldson-Thomas invariants, or can it be refined to get e.g. motivic Donaldson-Thomas invariants.
  • Is there a known relationship between wall-crossing formulas and this model?

I am still a little foggy on the exact relationship between BPS invariants and Donaldson-Thomas invariants, and so unfortunately I am phrasing my question to be about both of them instead of a particular type.

An example answer I am looking for would be something like this. Given a quiver diagram corresponding to a toric Calabi-Yau threefold, you can use the path algebra of the quiver to build a "crystal", and we consider the process of melting this crystal from the point of view of classical statistical mechanics. The partition function of this melting crystal model is a generating function for BPS invariants. This model can be constructed in chambers X, Y and Z of the Kähler moduli space for manifolds A, B, and C, and how this model relates to wall crossing phenomena has been interpreted in cases D, E, and F, and it has been refined to compute motivic Donaldson-Thomas invariants in the case of G, H, and I.

There are other methods that have been found to compute these invariants, such as the topological vertex. I'd like answers about these other methods if possible (I probably do not even know about all of them), but if that makes this question too broad then I will be happy with an explanation of what is known about the melting crystal model. If there is a recent reference that gives a broad review of these types of questions, I would be very pleased to have that as an answer as well. I am relatively proficient in the mathematical language used in this area, but I only understand the basics of string theory, so I'd appreciate a mathematically-focused answer. Thanks!

This post imported from StackExchange MathOverflow at 2014-10-04 15:31 (UTC), posted by SE-user Jon Paprocki
asked Apr 30, 2014 in Theoretical Physics by Jon Paprocki (30 points) [ no revision ]
retagged Oct 4, 2014

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOverflo$\varnothing$
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...