• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,047 questions , 2,200 unanswered
5,345 answers , 22,709 comments
1,470 users with positive rep
816 active unimported users
More ...

  Generalizing a result of Paul Andi Nagy

+ 2 like - 0 dislike

I am trying to generalizate a result of Paul Andi Nagy which says that in a almost Kähler manifold with parallel torsion we have $\langle \rho,\Phi-\Psi\rangle $ is a nonnegative number; in fact $$ 4\langle \rho,\Phi-\Psi\rangle = |\Phi|^2 + |\Psi|^2, $$ where $\rho$ is the Ricci form defined by $\rho=\langle Ric'J\cdot,\cdot\rangle$ ($Ric'$ is the $J$-invariant part of the Ricci tensor) and \begin{eqnarray} \Psi(X,Y)&=& \sum_{i=1}^{2m} \langle (\nabla_{e_i}J)JX,(\nabla_{e_i}J)Y\rangle \\ \Phi(X,Y)&=& \frac{1}{2}\sum_{i=1}^{2m} \langle (\nabla_{JX}J)e_{i},(\nabla_{Y}J)e_{i}\rangle , \end{eqnarray} here, $\nabla$ is the Levi-Civita connection and $\{e_i,1\leq i \leq 2m\}$ is some local orthonormal basis.

I think that for any almost Kähler manifold \begin{eqnarray} |Ric|^2-\frac{1}{2}\langle \rho,\Phi-\Psi\rangle \geq 0 \end{eqnarray} but I don't know how to relate $|Ric|^2-\frac{1}{2}\langle \rho,\Phi-\Psi\rangle $ with the norm of well-known tensors. Thank you for your answers.

I am really sorry for lack of clarity. I would like to show that $|Ric|^2-\frac{1}{2}\langle \rho,\Phi-\Psi\rangle $ is a nonnegative number by finding a formula for $|Ric|^2-\frac{1}{2}\langle \rho,\Phi-\Psi\rangle $ in terms of the norm of well-known tensors (e.g. Weyl Tensor, $Ric$, $Ric'$, $\Psi$, $\Phi$).

This post imported from StackExchange MathOverflow at 2014-10-03 22:18 (UTC), posted by SE-user Song Dai
asked May 4, 2014 in Mathematics by Song Dai (10 points) [ no revision ]
retagged Nov 9, 2014 by dimension10
You haven't really asked a question. Just what do you want to know?

This post imported from StackExchange MathOverflow at 2014-10-03 22:18 (UTC), posted by SE-user Robert Bryant

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights