Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,786 comments
1,470 users with positive rep
820 active unimported users
More ...

  QED proper vertex Ward identity derived from global symmetry and Schwinger-Dyson Equations?

+ 1 like - 0 dislike
4012 views

In QED, according to Schwinger-Dyson equation, $$\left(\eta^{\mu\nu}(\partial ^2)-(1-\frac{1}{\xi})\partial^{\mu}\partial^{\nu}\right)\langle 0|\mathcal{T}A_{\nu}(x)...|0\rangle = e\,\langle 0|\mathcal{T}j^{\mu}(x)...|0\rangle + \text{contact terms}$$ And the term $\left(\eta^{\mu\nu}(\partial ^2)-(1-\frac{1}{\xi})\partial^{\mu}\partial^{\nu}\right)$ is just the inverse bare photon propagator, so if we put the photon on shell, then the l.h.s will yield the complete n-point Green function with the complete photon propagator removed and also multiplied by a factor $Z_3$, the vector field renormalization constant.
But the r.h.s gives $$\partial_{\mu}\, \langle 0|\mathcal{T}j^{\mu}(x)...|0\rangle = \text{contact terms}$$ which is the common complete (n-1)-point complete Green function.

So if we truncate all the n-1 external complete propagators, then we are left with the proper vertex Ward identity.

The problem is, now the constant $Z_3$ appeared.
But the well known Ward identity, e.g. $$p_\mu\Gamma^\mu_P(k,l)=H(p^2)[iS^{-1}(k)-iS^{-1}(l)]$$ doesn't contain $Z_3$.

Where went wrong? Please help.

This post imported from StackExchange Physics at 2014-09-30 06:47 (UTC), posted by SE-user LYg
asked Sep 28, 2014 in Theoretical Physics by LYg (15 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOver$\varnothing$low
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...