• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,054 questions , 2,207 unanswered
5,345 answers , 22,721 comments
1,470 users with positive rep
818 active unimported users
More ...

  fake Calabi-Yau threefold

+ 4 like - 0 dislike

(1) What is a "fake Calabi-Yau threefold"? Can I describe as a complex or symplectic manifold with trivial canonical bundle, but no compatible Kahler structure? Some mathematicians actually seem to think there is a large generalization of mirror symmetry applying to these kinds of spaces...(I note that none of the infinite class being discussed are thought to be T^3 fibrations in any obvious sense, which gives cause for at least mild suspicion about uses in mirror symmetry).

(2) There is a natural reason for mathematicians to think some mirror symmetry may relate complex and symplectic manifolds which don't come from superconformal sigma models (reference request). I am very excited with the basic idea that such pairs can be obtained from "mirror" smoothings of singular limits of Calabi-Yau's which are mirror. (Can one make sense of this physically too, but not in a way that is accessible to known sigma model techniques?).

This post imported from StackExchange MathOverflow at 2014-09-18 10:47 (UCT), posted by SE-user Irina

asked Jun 28, 2013 in Theoretical Physics by Irina (75 points) [ revision history ]
edited Sep 18, 2014 by Dilaton
Perhaps you can say where you saw the term "fake Calabi-Yau." I can think of several possibilities, but I can't guess without context.

This post imported from StackExchange MathOverflow at 2014-09-18 10:47 (UCT), posted by SE-user Mark Gross

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights