Moduli spaces in string theory vs. soliton theory | PhysicsOverflow
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

157 submissions , 130 unreviewed
4,116 questions , 1,513 unanswered
4,971 answers , 21,204 comments
1,470 users with positive rep
571 active unimported users
More ...

  Moduli spaces in string theory vs. soliton theory

+ 4 like - 0 dislike
790 views

In both string theory and soliton theory, moduli spaces are frequently used.

As far as I known, for soliton theory, moduli spaces are something like collective coordinates for solitons, and for string theory, moduli spaces is the spaces of all metrices divided by all conformal rescalings and diffeomorphisms. It seems like these two definitions(?) of moduli spaces are quite different, but the same terminology is used in both cases. I also learned that the name 'moduli spaces' comes from abstract geometry, but I don't know if that's any help here.

My question is the following: Could anyone provide an intuitive connection between the two uses of moduli spaces, or highlight the differences?

This post imported from StackExchange Physics at 2014-09-09 21:57 (UCT), posted by SE-user phy_math
asked Sep 9, 2014 in Theoretical Physics by phy_math (185 points) [ no revision ]
These are very different moduli spaces, but they both follow the same idea. Have you looked at, e.g., moduli spaces on the nLab?

This post imported from StackExchange Physics at 2014-09-09 21:57 (UCT), posted by SE-user ACuriousMind

1 Answer

+ 4 like - 0 dislike

This is a situation where knowing the history of the terminology can be helpful.

The QFT/string theory terminology comes from algebraic geometry, where the term moduli space is used for any space whose points correspond to some kind of geometric object. The projective space $\mathbb{P}(V)$, for example, is the moduli space of lines in the vector space $V$. Likewise, a moduli space of instantons is the space of solutions to a set of instanton equations. And the moduli space of complex curves is what you end up integrating over in perturbative string theory after accounting for the gauge symmetries acting on the worldsheet metric.

The word 'modulus' (plural 'moduli') just means 'parameter'. Moduli spaces were originally thought of as spaces of parameters, rather than as spaces of geometric objects; mathematicians were interested in how the various ways of parameterizing geometric objects were related and eventually realized these parameters were coordinates on a space. String theorists have resurrected this old terminology by using the term 'moduli field' to refer to a field which parametrizes a moduli space.

This post imported from StackExchange Physics at 2014-09-09 21:57 (UCT), posted by SE-user user1504
answered Sep 9, 2014 by user1504 (1,110 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$y$\varnothing$icsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...