Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

145 submissions , 122 unreviewed
3,930 questions , 1,398 unanswered
4,853 answers , 20,624 comments
1,470 users with positive rep
501 active unimported users
More ...

The Renormalization Group According to Balaban, III. Convergence

Originality
+ 0 - 0
Accuracy
+ 0 - 0
Score
0.00
58 views
Referee this paper: [arXiv:1304.0705] by J. Dimock

Please use comments to point to previous work in this direction, and reviews to referee the accuracy of the paper. Feel free to edit this submission to summarise the paper (just click on edit, your summary will then appear under the horizontal line)

(Is this your paper?)


Balaban has developed a very powerful renormalization group method for analyzing lattice quantum field theories. This paper by J. Dimock is the first of three giving an expository account of Balaban's approach to the renormalization group, illustrating the method with a treatment of the the ultraviolet problem for the scalar $\Phi^4$ model on a toroidal lattice in dimension $d=3$.

This third part demonstrates convergence of the expansion and completes the proof of a stability bound. See also part I and part II.

summarized by Arnold Neumaier
paper authored Apr 3, 2013 to math-ph by  (no author on PO assigned yet) 
  • [ revision history ]
    edited Aug 27, 2014 by Arnold Neumaier

    Your Review:

    Please use reviews only to (at least partly) review submissions. To comment, discuss, or ask for clarification, leave a comment instead.
    To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
    Please consult the FAQ for as to how to format your post.
    This is the review box; if you want to write a comment instead, please use the 'add comment' button.
    Live preview (may slow down editor)   Preview
    Your name to display (optional):
    Privacy: Your email address will only be used for sending these notifications.
    Anti-spam verification:
    If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
    p$\hbar$ys$\varnothing$csOverflow
    Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
    To avoid this verification in future, please log in or register.




    user contributions licensed under cc by-sa 3.0 with attribution required

    Your rights
    ...