# Completing the trace in the Non-abelian Chern-Simons Term

+ 2 like - 0 dislike
90 views

I've been having a little trouble proving that [Page 138 of "Introduction to Topological Quantum Computation" by Jiannis K. Pachos]:

$S_{CS} = \dfrac{k}{4 \pi} \int_{M} d^{3}x \, \epsilon^{\mu \nu \rho} tr \left( A_{\mu}\partial_{\nu}A_{\rho} + i\dfrac{2}{3} A_{\mu} A_{\nu} A_{\rho} \right)$

(with $A_{\mu} = A_{\mu}^{a} T_{a}$ and $T_{a}$ a generator of the gauge group's Lie alegebra) can be written as:

$S_{CS} = \dfrac{k}{8 \pi} \int_{M} d^{3}x \, \epsilon^{\mu \nu \rho} \left( A_{\mu}^{a}\partial_{\nu}A_{\rho}^{a} - \dfrac{1}{3} f_{abc} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c} \right)$

where$f^{abc}$ is antisymmetric.

My attempt thus far:

$tr \left( A_{\mu}\partial_{\nu}A_{\rho} + i\dfrac{2}{3} A_{\mu} A_{\nu} A_{\rho} \right)$

$= tr \left( A_{\mu}^{a} T_{a} \, \partial_{\nu} \, A_{\rho}^{b} T_{b} + i\dfrac{2}{3} A_{\mu}^{a} T_{a} \, A_{\nu}^{b} T_{b} \, A_{\rho}^{c} T_{c} \right)$

$= tr \left( A_{\mu}^{a} \partial_{\nu} A_{\rho}^{b} (T_{a} T_{b}) + i\dfrac{2}{3} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c} (T_{a}T_{b}T_{c}) \right)$

Using $tr(T_{a} T_{b}) = \dfrac{1}{2}\delta_{ab}$ and $(T_{a}T_{b}T_{c}) = \dfrac{1}{2}[T_{a}, T_{b}]T_{c} + \dfrac{1}{2}\{ T_{a}, T_{b} \}T_{c}$ we get:

$= \left( \dfrac{1}{2}A_{\mu}^{a} \partial_{\nu} A_{\rho}^{a} + i\dfrac{1}{3} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c} \, tr \left( [T_{a},T_{b}]T_{c} + \{ T_{a},T_{b} \}T_{c} \right) \right)$

Using

$$[T_{a}, T_{b}] = if_{abd}T_{d}$$

and $\{T_{a}, T_{b}\} = \dfrac{1}{N} \delta_{ab} + d_{abd}T_{d}$, where $d_{abc}$ is symmetric, we get:

$= \left( \dfrac{1}{2}A_{\mu}^{a} \partial_{\nu} A_{\rho}^{a} + i\dfrac{1}{3} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c} \, tr \left( if_{abd}T_{d}T_{c} + \dfrac{1}{N} \delta_{ab} T_{c} + d_{abd}T_{d}T_{c} \right) \right)$

Using $tr(T_{A}) = 0$ and $tr(T_{a} T_{b}) = \dfrac{1}{2}\delta_{ab}$, we get:

$$= \left( \dfrac{1}{2}A_{\mu}^{a} \partial_{\nu} A_{\rho}^{a} + i\dfrac{1}{3} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c} \, \dfrac{1}{2} \left( if_{abc} + d_{abc}\right) \right)$$

Now this would be precisely what we need if the $d_{abc}$ disappeared somehow but I'm not sure how to make that happen. If $A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c}$ were anti-symmetric under permutation of the indices (abc) then if would cancel with the symmetric $d_{abc}$ but as far as I'm aware the $A_{\mu}^{a}$'s don't behave that way.

Any help would be greatly appreciated.

This post imported from StackExchange Physics at 2014-06-21 08:58 (UCT), posted by SE-user Siraj R Khan
It's been a while since I did this calculation but I expect you can use the anti-symmetry of the Levi-Civita symbol $\epsilon^{\mu\nu\rho}$ to show that the unwanted symmetric combination of the gauge fields vanishes.

This post imported from StackExchange Physics at 2014-06-21 08:58 (UCT), posted by SE-user Mark Mitchison
That seems to be it, thank you!

This post imported from StackExchange Physics at 2014-06-21 08:58 (UCT), posted by SE-user Siraj R Khan

+ 6 like - 0 dislike

I think is quite simple if you split the product of two $A_\mu$'s in symmetric and anti-symmetric terms as $$A_\mu A_\nu=\frac{1}{2}[A_\mu,A_\nu]+\frac{1}{2}\{A_{\mu},A_\nu\}\,.$$ Thus, the action of $\epsilon^{\mu\nu\rho}$ on $A_\mu A_\nu$ just kills the symmetric piece $$\epsilon^{\mu\nu\rho}A_\mu A_\nu=\epsilon^{\mu\nu\rho}\frac{1}{2}[A_\mu,A_\nu]\,.$$ Now, with the normalization $\mathrm{Tr}(T^a T^b)=\delta^{ab}/2$, is trivial to show that $$\mathrm{Tr}\left([A_\mu,A_\nu]A_\rho\right)=A_\mu^a A_\nu^b A^c_\rho \mathrm{Tr}\left([T^a,T^b]T^c\right)=iA_\mu^a A_\nu^b A^c_\rho f^{abd}\mathrm{Tr}(T^d T^c)=i\frac{f^{abc}}{2}A_\mu^a A_\nu^b A^c_\rho$$ and $$\mathrm{Tr}(A_\mu\partial_\nu A_\rho)=\frac{1}{2}A_\mu^a \partial_\nu A^a_\rho$$. Putting everything together we arrive at the result, $$S_{CS}=\frac{k}{8\pi}\int_M d^3 x\, \epsilon^{\mu\nu\rho}\left(A_\mu^a \partial_\nu A^a_\rho-\frac{1}{3}f^{abc}A_\mu^a A_\nu^b A^c_\rho\right)$$

This post imported from StackExchange Physics at 2014-06-21 08:58 (UCT), posted by SE-user TwoBs
answered Jun 19, 2014 by (285 points)
Thank you for the extremely speedy response, this really helped me out.

This post imported from StackExchange Physics at 2014-06-21 08:58 (UCT), posted by SE-user Siraj R Khan

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsO$\varnothing$erflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.