This is a question that I asked in the mathematics section, but I believe it may get more attention here. I am working on a project dedicated to the quantisation of commuting matrix models. In the appropriate formalism this problem is reduced to a quantisation in a curved space -- the space of commuting matrices. The general prescription for quantisation in curved space involves ambiguity of the Hamiltonian operator proportional to the scalar curvature of the curved space - hence my question.

A set of $p$ commuting $n\times n$ hermitian matrices $X^{\mu}$ for $\mu=1,\dots p$, is parametrised in terms of a set of $p$ diagonal matrices $\Lambda^{\mu}$ and an unitary matrix $U$ via:

$X^{\mu}=U\,\Lambda^{\mu}\,U^{\dagger}~~$ for $~\mu=1\dots p$,

clearly not all degrees of U contribute to this parametrisation, for example a reparametrisation $U'= D\,U$, where $D$ is a diagonal unitary matrix would result in the same set of commuting matrices. In other words only the elements of the quotient space $U(n)\,/\,U(1)^n$, which is the maximal flag manifold $F_n$, contribute to the parametrisation. The metric on the resulting curved manifold can be calculated as a pull-back of the metric on the space of hermitian matrices defined as:

$ds_{X}^2=Tr\,\left( dX^{\mu}dX^{\mu}\right) $ ,

Using that $U^{\dagger}d X^{\mu} U=d\Lambda^{\mu}+[\theta,\Lambda^{\mu}]~~$, where $\theta$ is the Maurer-Cartan form $\theta=U^{\dagger}dU$, one can write the induced metric as:

$ds^2=\sum\limits_{i=1}^n(d\vec\lambda_i)^2+2\sum\limits_{i<j}(\vec\lambda_i-\vec\lambda_j)^2\theta_{ij}\bar{\theta}_{ij}~~$, where $~~\vec \lambda_i =(\Lambda^1_{ii},\dots,\Lambda^p_{ii})$ .

Now I need the Riemann curvature of the above metric. It seems that it is convenient to work in tetrad formalism, using tetrads $E_{ij}=|\vec\lambda_i-\vec\lambda_j|\,\theta_{ij}$, for $i<j$. The problem is that $d E_{ij}$ will now contain a term proportional to $(\theta_{ii}-\theta_{jj})\wedge\theta_{ij}$ and since $\theta_{ii}$ are not part of the basis the spin curvature cannot be written easily without using the explicit parametrisation of $U(n)$. Intuitively, I know that the scalar curvature should depend only on the lambdas ($\vec\lambda_i$), and I have verified that explicitly for $SU(2)$ and $SU(3)$, however a general result seems to require some invariant way to express the pullback of the term $(\theta_{ii}-\theta_{jj})\wedge\theta_{ij}$ on the submanifold spanned by the off diagonal $\theta$'s.

I was wondering if mathematicians have explored the manifold of commuting hermitian matrices. In fact even a reference to a convenient parametrisation of the maximal flag manifold $F_n$ would greatly help me in deriving a general expression for the scalar curvature. Any comments/suggestions are welcomed.

This post imported from StackExchange Physics at 2014-05-04 11:28 (UCT), posted by SE-user vesofilev