# Can a value of "length, in meters" be attributed to a pair of ends which are rigid (but not at rest) to each other?

+ 2 like - 2 dislike
745 views

The definition of the SI base unit "metre"  doesn't seem to rule out explicitly that a certain value of "length, in meters" could be attributed to a pair of ends which are rigid to each other, but not at rest to each other.

Consider, therefore, two such ends, $A$ and $B$, which both find constant but unequal ping durations between each other, i.e. in the notation of $\! {\,}^{(\ast)}$:

$[ \, A \, B \, A \, ] \ne [ \, B \, A \, B \, ]$.

Is there a value of "length, in meters" attributable to this pair of ends, $A$ and $B$ ?

If so, what is that value?,
i.e. if the SI definition allowed to express the value of "the lenght $AB$" as "$x \, \text{m}$", for some positive real number $x$, then how should $x$ be expressed in terms of the two (given) unequal ping duration values $[ \, A \, B \, A \, ]$ and $[ \, B \, A \, B \, ]$, and the SI base unit "second" ("$\text{s}$")?
(Is perhaps: "$x := \left( \frac{[ \, A \, B \, A \, ]}{2 \, \text{s}} + \frac{[ \, B \, A \, B \, ]}{2 \, \text{s}} \right) \times \frac{299 \, 792 \, 458}{2}$"?
Or perhaps: "$x := \sqrt{ \frac{[ \, A \, B \, A \, ]}{2 \, \text{s}} \times \frac{[ \, B \, A \, B \, ]}{2 \, \text{s}} } \times 299 \, 792 \, 458$"? ...)

References:
 SI brochure (8th edition, 2006), Section 2.1.1.1; http://www.bipm.org/en/si/base_units/metre.html ("The metre is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second."). Together with "the mise en pratique of the definition of the metre"; http://www.bipm.org/en/publications/mep.html

 J.L.Synge, "Relativity. The general Theory", North-Holland, 1960; p.409:
" [...] light signals passing between a source $0$ and mirrors $1$, $2$, [...]
Trip-times such as $[ \, 0 \, 1 \, 0 \, ]$ [...] are measureable [...]
"

$(\ast$: Suggestions for more standard and/or expressive notation for ping durations are welcome.$)$

This post imported from StackExchange Physics at 2014-04-24 07:32 (UCT), posted by SE-user user12262

retagged Apr 24, 2014
I don't understand your question very well. Why can't you measure the distance between $A$ and $B$?

This post imported from StackExchange Physics at 2014-04-24 07:32 (UCT), posted by SE-user jinawee
jinawee: "Why can't you measure the distance between $A$ and $B$?" -- Well, how to use the SI prescription "the path travelled by light in vacuum during" in the setup scenario with unequal ping durations $[ \, A \, B \, A \, ] \ne [ \, B \, A \, B \, ]$? How to get one result ("the length separating $A$ and $B$ from each other; in meters") at all? (Instead e.g. describing these two ends by two values of quasi-distances, such as the two separate values "$c/2 [ \, A \, B \, A \, ]$" and "$c/2 [ \, B \, A \, B \, ]$"?) Why is the SI definition not rigorous and unambiguous on this point??

This post imported from StackExchange Physics at 2014-04-24 07:32 (UCT), posted by SE-user user12262
What do you mean ping duration? Is there a physical example of your problem? Could you do a sketch?

This post imported from StackExchange Physics at 2014-04-24 07:32 (UCT), posted by SE-user jinawee
jinawee: "What do you mean [by] ping duration?" -- The duration of some particular participant (such as $A$) from having stated some particular signal indication until observing the (echo-)indication of some other participant (e.g. $B$) of having observed the signal indication. In other words: just what Synge called "trip-time". (That's why I used Synge's notation in my question here ...) "Is there a physical example of your problem?" -- Sure. Can $A$ and $B$ of that example be attributed a value of "length, in meters" by the SI prescription??

This post imported from StackExchange Physics at 2014-04-24 07:32 (UCT), posted by SE-user user12262

Just use the instantaneous position of either end. The length is ambiguous otherwise, because you need to specify the frame.

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:$\varnothing\hbar$ysicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.