• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

174 submissions , 137 unreviewed
4,308 questions , 1,640 unanswered
5,089 answers , 21,602 comments
1,470 users with positive rep
635 active unimported users
More ...

  $P$ symmetry that is apparent with one definition of fields but not with another

+ 4 like - 0 dislike

Suppose that we have a Lagrangian density like $$\mathcal L = -\frac{1}{4} \operatorname{tr} F_{\mu\nu}F^{\mu\nu} + \frac{\theta}{32\pi^2} \operatorname{tr} \big( \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu}F_{\rho\sigma}\big) + \overline{\psi}\gamma^\mu D_\mu \psi$$ where $F_{\mu\nu}$ is the gauge field strength and $D_\mu$ the gauge covariant derivative, and $\psi$ is a fermion field. This Lagrangian is not $P$ conserving because of the $\theta$ term.

However if we redefine the fields $\psi \mapsto \exp(i\alpha \gamma_5)\psi$ we can make $\theta$ go away, by choosing $\alpha = \theta/2$ as per the Fujikawa method (described in [Weinberg], Chapter 22 or [Fujikawa]); this is due the path integral measure also transforming under the redifinition. With this redefinition of fields $\mathcal L$ is manifestly $P$ conserving. But surely I can't get more or less symmetry by redefining fields, so how should I understand that the $P$ symmetry is not manifest with the original definition of the fields?

I suspect that the $P$ transformation too transforms the path integral measure, in a way that sends $\theta \mapsto -\theta$, but I do not know how to show this.

  • [Weinberg] Weinberg, S. The Quantum Theory of Fields. 2: Modern Applications (Cambridge, 2005).
  • [Fujikawa] Fujikawa, K. Path-Integral Measure for Gauge-Invariant Fermion Theories. Phys. Rev. Lett. 42, 1195{1198 (18 Apr. 1979).
This post imported from StackExchange Physics at 2014-04-13 14:05 (UCT), posted by SE-user Robin Ekman
asked Apr 11, 2014 in Theoretical Physics by Robin Ekman (215 points) [ no revision ]

Please log in or register to answer this question.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights