• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,064 questions , 2,215 unanswered
5,347 answers , 22,741 comments
1,470 users with positive rep
818 active unimported users
More ...

  Why are topological solitons present in some phases for lattice models?

+ 7 like - 0 dislike

Over a spatial continuum, it is easy to see why some topological solitons like vortices and monopoles have to be stable. For similar reasons, Skyrmions also have to be stable, with a conserved topological density. The reason is nontrivial homotopy.

Surprisingly, in some phases, but not all phases, the analog of topological solitons, or at least what can be interpreted as them, also emerge over lattice models. Why is that? There is no nontrivial homotopy over a lattice. Why are there some phases of the XY-model with deconfined vortices and antivortices? Why are deconfined monopoles present in some 3D lattice models?

This post imported from StackExchange Physics at 2014-04-05 03:26 (UCT), posted by SE-user Luke Wender
asked Sep 21, 2012 in Theoretical Physics by Luke Wender (35 points) [ no revision ]

1 Answer

+ 2 like - 0 dislike

I was wondering about exactly the same question some days ago, reading the seminal paper of Mermin (Rev. Mod. Phys. 51, 591--648 (1979), The topological theory of defects in ordered media), where you find an introductory discussion for the example of spins within the two-dimensional plane. There you find a lot of plots with spins (depicted as arrows in the plane) arranged in a circle, showing the orientation of the order parameter as one performs a closed loop in real space. However, as you have pointed out, for spins on a lattice there is no nontrivial homotopy. Using the famous rubber band analogy, it is clear that for a continuous rubber band a deformation from a loop winding one time around the circle to a constant loop (while keeping the end points fixed) is not possible, because continuity ensures that you cannot move individual parts of your rubber band without affecting the adjacent parts (i.e. stretching the band). For a lattice, there is no continuity, such that without invoking energetic arguments, you can rotate your spins arbitrarily at each point of the lattice. It behaves like having a rubber band that is cut into pieces and you can just take each ragged piece to the constant loop position without problems.

However, when invoking energetic arguments, i.e. a preference for the adjacent spins to align, you recover the rubber band tension without invoking continuity. Remark that when trying to bring the n=1 configuration to the constant n=0 loop, you will try to rotate the spins on one half of the circle to the left and the ones on the other half to the right, such that at some point you will encounter an incompatibility. Of course, this argument is far from being rigorous but it makes sense to me from an intuitive perspective. Still I am not sure it is applicable to other settings.

This post imported from StackExchange Physics at 2014-04-05 03:26 (UCT), posted by SE-user Jascha Ulrich
answered Apr 26, 2013 by Jascha Ulrich (20 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights