• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

186 submissions , 146 unreviewed
4,742 questions , 1,942 unanswered
5,273 answers , 22,455 comments
1,470 users with positive rep
754 active unimported users
More ...


This is a sandbox question thread for testing purposes.

+ 2 like - 0 dislike

The Maximally Satirical Sandbox Model (MSSM)

The Maximally Satirical Sandbox Model is a model of an ideal sandbox, which can be stated as follows:- continued collaborative perturbations to the "Sandbox functional" results in \(\delta S=0\) where S is satire. This is equivalent through a simple R transformation (where R is reflection), to the Minimally Satirical Sandbox Model. The knowledge of the existence of knowledge of these two models can then be used to prove the PhysicsOverflow concavity theorem.

On the non-perturbative formulation of sock theory and the long standing missing sock problem

The Minimally Supersymmetric Sock Model (MSSM) is a supersymmetric \(\mathcal{N}=1\) matrix model that describes socks and sockinos. Socks are described as spin-2 massless particles while sockinos are described as spin 3/2 particles. Spontaneous supersymmetry breaking causes sockinos to gain mass, which explains the spontaneous disappearance of socks and their decoupling from the sockinos, besides when in a high-energy state, during which both sock disappear spontaneously and couple with their respective shoes and shoeinos (they are prevented from decoupling from their shoe because of Sock exclusion).

The Minimally Supersymmetric Sock Model exhibits S-duality with the Minimally Supersymmetric Shoe Model (MSSM). This means that a strongly-coupled sock is equivalent to a weakly-coupled shoe. This is unsurprising, because a very tight sock is the same as a very loose shoe, but the reverse is much more astonishing: a weakly-coupled sock is equivalent to a strongly-coupled shoe, i.e. a very loose sock is the same as a very tight shoe.

The Minimally Supersymmetric Sock Model also exhibits T-duality with the Minimally Supersymmetric Glove Model. This means that a very small sock is a very large glove, and vice versa.

This is an answer to the unsolved problem posted on Stack Exchange a few years ago, that was unfairly closed as being off-topic, despite the strong correlation observed by Shoesock Gloveson between the percentage of off-topic questions and the overall quality of a site.


asked Mar 7, 2014 in Public Official Posts by dimension10 (1,975 points) [ revision history ]
edited Apr 3, 2015 by dimension10
Most voted comments show all comments

Testing testing (I am dimension10).      

@ArnoldNeumaier Fixed : )

please click again to confirm.

Most recent comments show all comments

comment - original revision.

If you see this comment, it means that there's a pretty annoying bug present in the autosave feature.

original revision of the comment.

32 Answers

+ 0 like - 0 dislike


OK, I dont see why it does not work now with the slashes


<IMG SRC="http://austrianeconomists.typepad.com/.a/6a00d83451eb0069e2011570ea5170970c-pi"; WIDTH = 350>

answered May 1, 2014 by Dilaton (6,040 points) [ revision history ]
edited May 1, 2014 by dimension10

Use source mode for HTML, like:

DON'T FEED THE TROLLS !!! Also, HTML closing tags are slashes, not backslashes.

It doesn't work because you didn't click the "Source" button. I have put what I meant to the bottom of your post.    

Huh, I entered the text and clicked the source button afterwards. Does one have to click the source button first and enter the code afterwards?

@Dilaton Yes of course. When you switch the the source mode, you can type in HTML, but the text entered in the WYSIWYG isn't suddenly considered to be HTML; instead, it is converted into HTML, like the "<" get's converted into an &#somenumbers; etc.  

By the way, <!---comments---> don't work.  


Yes thanks, now I see :-)

+ 0 like - 0 dislike


... is now up and running here: www.physicsoverflow.org

PhysicsOverflow is meant to be some kind of a rebirth of the untimely passed away Theoretical Physics SE and a little physics brother of MathOverflow.

Compared to the former theoretical physics site, we have slightly lowered the bar to ask questions to graduate-level upward and broadened the scope to include experimental physics and phenomenology.

Apart from the high-level Q&A, PhysicsOverflow will offer in the future a Reviews section, dedicated to discuss and peer review (mostly ArXiv but other sources can be considered too) papers publicly and "in real time".

Please join this site and help the community grow by contributing nice physics !

answered May 9, 2014 by Dilaton (6,040 points) [ revision history ]
edited May 9, 2014 by Dilaton
+ 0 like - 0 dislike


${\bf 3}\oplus \overline{\bf 3} \oplus {\bf 1} \oplus {\bf 1} \oplus {\bf 1}$


\({\bf 3}\oplus \overline{\bf 3} \oplus {\bf 1} \oplus {\bf 1} \oplus {\bf 1}.\)

OK ...

answered May 17, 2014 by Dilaton (6,040 points) [ revision history ]
edited May 17, 2014 by Dilaton

Ok, copy-pasting an equation from TRF seems to work, howver I am not sure if this is the best way when converting a TRF review into a PO review, which Lumo kindly allows :-)

@Dilaton; Huh, can't you just inspect-element and copy the HTML source?

You can inspect element on the first line of the post body, navigate to <div class="post-body">, select it, right-click, and click "Copy Inner HTML". You will then get the entire post body, which makes it much easier. Be sure to paste in source mode.  

+ 0 like - 0 dislike

Hi, this is testing whether this link works OK

answered Feb 5, 2015 by physicsnewbie (-20 points) [ revision history ]
+ 0 like - 0 dislike

This is another example of a link

answered Feb 5, 2015 by physicsnewbie (-20 points) [ no revision ]
+ 0 like - 0 dislike

Test test

\[x = {-b \pm \sqrt{b^2-4ac} \over 2a}\]


answered Feb 20, 2015 by dimension10 (1,975 points) [ revision history ]
+ 0 like - 0 dislike
answered May 14, 2015 by dimension10 (1,975 points) [ no revision ]
+ 0 like - 0 dislike
answered May 14, 2015 by Dilaton (6,040 points) [ revision history ]
edited May 14, 2015 by Dilaton
+ 0 like - 0 dislike


  • asasdaddddddddddddddd
  • asaaaaaaaaaaaaaaaaaaa


answered May 15, 2015 by dimension10 (1,975 points) [ revision history ]
+ 0 like - 0 dislike

test test test

answered May 18, 2015 by Arnold Neumaier (15,518 points) [ no revision ]

comment 1

comment 2

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights