# The Thomas Method Algorithm for solving three diagonal system in Multi-step Wide-Angle (Pade(2,2)) Beam Propagation Method

+ 1 like - 0 dislike
170 views

I'm trying to simulate in Matlab a 2D gaussian beam propagation in free propagation region using multi-step Wide-Angle BPM (Pade(2, 2)) with Crank-Nicholson scheme. According to book Pade polynomials coefficients are given by:
$$\xi_1 = \frac{3}{4}-\frac{iK\Delta z(1-\alpha)}{2}$$ $$\xi_2 = \frac{1}{16}-\frac{iK\Delta z(1-\alpha)}{4}$$ $$\chi_1 = \frac{3}{4}+\frac{iK\Delta z\alpha}{2}$$ $$\chi_2 = \frac{1}{16}+\frac{iK\Delta z\alpha}{4}$$
where $\alpha$ is backward/forward component ratio and $\alpha=0.5$.

Roots of the numerator and denominator polynomials can be obtained:
$$\alpha_1=\frac{1}{2}\left[\xi_1-\sqrt{\xi_1^2-4\xi_2}\right]$$ $$\alpha_2=\frac{1}{2}\left[\xi_1+\sqrt{\xi_1^2-4\xi_2}\right]$$ $$\beta_1=\frac{1}{2}\left[\chi_1-\sqrt{\chi_1^2-4\chi_2}\right]$$ $$\beta_2=\frac{1}{2}\left[\chi_1+\sqrt{\chi_1^2-4\chi_2}\right]$$

The propagation is split into two steps:
$$u^{m+\frac{1}{2}}=\frac{(1+\alpha_1\mathcal{P})}{(1+\beta_1\mathcal{P})}u^m$$ $$u^{m+1}=\frac{(1+\alpha_2\mathcal{P})}{(1+\beta_2\mathcal{P})}u^{m+\frac{1}{2}}$$

which yields finite-difference equation
$$u_j^{m+\frac{1}{2}}+\frac{\beta_1}{K^2}\frac{u_{j-1}^{m+\frac{1}{2}}-2u_j^{m+\frac{1}{2}}+u_{j+1}^{m+\frac{1}{2}}}{\Delta x^2}+\frac{\beta_1}{K^2}(k^2-K^2)u_j^{m+\frac{1}{2}}=u_j^m+\frac{\alpha_1}{K^2}\frac{u_{j-1}^m-2u_j^m+u_{j+1}^{m}}{\Delta x^2}+\frac{\alpha_1}{K^2}(k^2-K^2)u_j^m$$

where $k = k_0n$ is position-dependent wavenumber and $K=k_0n_0$ is the reference wavenumber. This equation forms a tridiagonal system, from where its coefficient $a_j, b_j, c_j, r_j$ are given by:
$$a_j=\frac{\beta_1}{K^2\Delta x^2}$$ $$b_j=1-\frac{2\beta_1}{K^2\Delta x^2}+\frac{\beta_1}{K^2}(k^2-K^2)$$ $$c_j=\frac{\beta_1}{K^2\Delta x^2}$$ and $r_j$ is the right side of equation.

This is tridiagonal system I need to solve. To do this I use Thomas Method Algorithm. This method says:
1. Set $\beta=b_1, u_1=\frac{r_1}{\beta}$
2. Evaluate for j=2 to n:
$$\gamma_j=\frac{c_{j-1}}{\beta}$$ $$\beta=b_j-a_j\gamma_j$$ $$u_j=\frac{r_j-a_ju_{j-1}}{\beta}$$

1. Find for j=1 to n-1
$$k=n-j$$ $$u_k=u_k-\gamma_{k+1}u_{k+1}$$

Now I have problem, because I can't really figure out how to correctly implement Thomas algorithm. Since in this situation $a_j, b_j, c_j = const$ only $r_j$ changes but I don't understand 1st point in this method. This is my Matlab code:

function u_m_total = WideAnglePade2(k0, step_z, step_x, lateral_x, ...
input_field, z_steps, n)

%% COEFFICIENTS

alpha = 0.5;

xi_1 = 0.75 - (1j * k0 * step_z * (1 - alpha))/2;
xi_2 = 1/16 - (1j * k0 * step_z * (1 - alpha))/4;
chi_1 = 0.75 + (1j * k0 * step_z * alpha)/2;
chi_2 = 1/16 + (1j * k0 * step_z * alpha)/4;

alfa1 = 0.5 * (xi_1 - sqrt(xi_1^2 - 4 * xi_2));
alfa2 = 0.5 * (xi_1 + sqrt(xi_1^2 - 4 * xi_2));
beta1 = 0.5 * (chi_1 - sqrt(chi_1^2 - 4 * chi_2));
beta2 = 0.5 * (chi_1 + sqrt(chi_1^2 - 4 * chi_2));

% caching coefficients to speed up computation

coeff_a1 = beta1 / (k0^2 * step_x^2);
coeff_b1 = 1 - 2 * beta1 / (k0^2 * step_x^2) + beta1 / k0^2 * ((k0 * n)^2 - k0^2);
coeff_c1 = beta1 / (k0^2 * step_x^2);

coeff_a2 = beta2 / (k0^2 * step_x^2);
coeff_b2 = 1 - 2 * beta2 / (k0^2 * step_x^2) + beta2 / k0^2 * ((k0 * n)^2 - k0^2);
coeff_c2 = beta2 / (k0^2 * step_x^2);

beta_1 = coeff_b1;
beta_2 = coeff_b2;

% creating vectors holding values for m_half_z and m_z
% I have problem in here, I don't know what to assign and where

u_m_half = zeros(z_steps, lateral_x);
u_m_total(1, :) = input_field;
u_m_total(1, 1) = input_field(1) / beta2;

for m=1:z_steps-1

disp(m);

%% STEP 1 PROPAGATION ΔZ/2

gamma = coeff_c1 / beta_1;
beta = coeff_b1 - coeff_a1 * gamma;

for j=2:lateral_x-1

r = u_m_total(m, j) + alfa1/k0^2 * (u_m_total(m, j-1) - ...
2*u_m_total(m,j) + u_m_total(m, j+1))/step_x^2 + alfa1/k0^2 *...
((k0 * n)^2 - k0^2) * u_m_total(m, j);

u_m_half(m, j) = (r - coeff_a1 * u_m_total(m, j-1))/beta;

end

for j=1:lateral_x-1

k=lateral_x-j;
u_m_half(m, k) = u_m_half(m, k) - gamma * u_m_half(m, k+1);

end

%% STEP 2 PROPAGATION ΔZ

gamma = coeff_c2 / beta_2;
beta = coeff_b2 - coeff_a2 * gamma;

for j=2:lateral_x-1

r = u_m_half(m, j) + alfa2/k0^2 * (u_m_half(m, j-1) - ...
2*u_m_half(m,j) + u_m_half(m, j+1))/step_x^2 + alfa2/k0^2 ...
* ((k0 * n)^2 - k0^2) * u_m_half(m, j);

u_m_total(m+1, j) = (r - coeff_a2 * u_m_half(m, j-1))/beta;

end

for j=1:lateral_x-1

k=lateral_x-j;
u_m_total(m+1, k) = u_m_total(m+1, k) - gamma * u_m_total(m+1, k+1);

end

end

end


But instead of simulating dispersion and broadening of beam, its amplitude goes towards +Inf.

This post imported from StackExchange Physics at 2017-01-11 10:31 (UTC), posted by SE-user Colonder
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ys$\varnothing$csOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.