Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

145 submissions , 122 unreviewed
3,930 questions , 1,398 unanswered
4,853 answers , 20,624 comments
1,470 users with positive rep
501 active unimported users
More ...

Wess-Zumino terms and their locality in a case of the presence of Goldstone bosons

+ 2 like - 0 dislike
57 views

Suppose the simple theory with chiral fermions possessing non-trivial gauge anomalies cancellation (it is given here):
$$
S = \int d^4 x \big(\bar{\psi}i\gamma_{\mu}D^{\mu}_{\psi}\psi + \bar{\kappa}i\gamma_{\mu}D^{\mu}_{\kappa}\kappa\big),
$$
where
$$
D^{\mu}_{\psi} = \partial^{\mu} - iA^{\mu}_{L}P_{L} -iA^{\mu}_{R}P_{R}, \quad D^{\mu}_{\kappa} = \partial^{\mu}+iA^{\mu}_{L}P_{L} +iA^{\mu}_{R}P_{R}
$$
Although separately $\psi, \kappa$ sectors are anomalous, together their gauge anomalies are cancelled:
$$
\partial_{\mu}J^{\mu}_{L/R,\psi, \kappa} = \pm \frac{1}{96\pi^2}\epsilon^{\mu\nu\alpha\beta}F_{\mu\nu}^{L/R}F_{\alpha\beta}^{L/R}, \quad \partial_{\mu}(J^{\mu}_{L/R,\psi}-J^{\mu}_{L/R,\kappa}) = 0
$$
Lets generate the mass for $\kappa$ fermion (by using spontaneous symmetry breaking with higgs singlet $fe^{i\varphi}$ with infinite mass for $f$) and integrate it out  in the limit $m_{\kappa}\to \infty$. Corresponding effective field theory has to be free from anomalies, so there must be (possibly non-local) a term $\Gamma[A_{L}, A_{R},\varphi ]$ reproducing the anomalous structure of the $\kappa$ sector; it is called the Wess-Zumino term. It is possible to write it explicitly, and it turns out that this it is local (a polynomial in $A, \varphi$ and their derivatives):

$$
\Gamma_{\text{WZ}} = \frac{1}{24\pi^{2}}\int d^{4}x\epsilon^{\mu\nu\alpha\beta}\bigg(A^{L}_{\mu}A^{R}_{\nu}\partial_{\alpha}A_{\beta}^{L} + A^{L}_{\mu}A^{R}_{\nu}\partial_{\alpha}A_{\beta}^{R}+
$$

$$+\frac{\varphi}{f}\big( \partial_{\mu}A_{\nu}^{L}\partial_{\alpha}A^{L}_{\beta}+\partial_{\mu}A^{R}_{\nu}\partial_{\alpha}A_{\beta}^{R}+\partial_{\mu}A_{\nu}^{L}\partial_{\alpha}A_{\beta}^{R}\big) \bigg)
$$

However, as I know, the anomaly (at least in theories with chiral fermions) is the local expression given by the variation of the non-local action. So where the non-locality is hidden?

asked Dec 22, 2016 in Theoretical Physics by NAME_XXX (1,010 points) [ revision history ]
recategorized Dec 22, 2016 by Dilaton

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$y$\varnothing$icsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...