• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

191 submissions , 151 unreviewed
4,796 questions , 1,987 unanswered
5,285 answers , 22,472 comments
1,470 users with positive rep
773 active unimported users
More ...

  How is the $\text{AdS}_3$ stress tensor in the Fefferman-Graham expansion derived?

+ 2 like - 0 dislike

I have been reading "Lectures on black holes and the $\text{AdS}_3$/$\text{CFT}_2$ correspondence" by Per Kraus.

We consider a theory of gravity with Einstein-Hilbert action $$ \frac{1}{16\pi G}\int \left(R-\frac{2}{\ell^2}\right)\sqrt{g}\mathrm{d}^3 x + \text{boundary terms}$$

One solution is $\text{AdS}_3$. I am struggling with deriving the $\text{AdS}_3$ stress tensor $$ T_{ij} = \frac{1}{8\pi G\ell}\left(g_{ij}^{(2)} - \mathrm{Tr}(g^{(2)})g_{ij}^{(0)}\right) \tag{2.16}$$ where the metric in $\text{AdS}$-space is $\mathrm{d}s^2 = \mathrm{d}\eta^2 + g_{ij}\mathrm{d}x^i\mathrm{d}x^j$ in Gaussian normal coordinates. There's a radial coordinate introduced earlier as $$ \mathrm{d}s^2 = \left(1 + \frac{r^2}{\ell^2}\right)\mathrm{d}t + \frac{\mathrm{d}r^2}{1+r^2/\ell^2} + r^2\mathrm{d}\phi^2\tag{2.2}$$ of which I don't know how to handle it or how to relate it to the "Fefferman-Graham expansion" $$ g_{ij} = \mathrm{e}^{2\eta/\ell}g_{ij}^{(0)} + g_{ij}^{(2)} + \dots \tag{2.12}$$ where I am also not sure what role exactly the "conformal boundary metric" $g_{ij}^{(0)}$ plays and how to handle these metrics in the computation of $(2.16)$.

I think this confusion also spills to the second section, the Virasoro generators: Why does the stress tensor in terms of $w,\bar w$ defined by $g_{ij}^{(0)}\mathrm{d}x^i\mathrm{d}x^j = \mathrm{d}w\mathrm{d}\bar w$ $$ T_{ww} = \frac{1}{8\pi G\ell} g^{(2)}_{ww}\tag{2.19}$$ not contain the conformal boundary metric $g^{(0)}_{ij}$?

This post imported from StackExchange Physics at 2015-11-13 22:28 (UTC), posted by SE-user Rev SS

asked Nov 12, 2015 in Theoretical Physics by Rev SS (10 points) [ revision history ]
edited Nov 13, 2015 by Dilaton

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights