# $q$-Deformed Quillen–Suslin Theorem for the Quantum Vector Spaces?

+ 5 like - 0 dislike
3222 views

Define n-quantum vector space to be the algebra $${\mathbb C}_q^n := \mathbb{C}< x_i ~ | ~ i =1, \ldots, N>/<x_i x_j = q x_j x_i ~ | ~ i< j>.$$ For $q=1$, we get the usual polynomial ring in $n$-variables, and so, Serre's conjecture (Quillen–Suslin theorem) tells that every finitely generated projective module over ${\mathbb C}_1^n$ is free. How does this work for $q \neq 1$? Is there a $q$-deformed Quillen–Suslin theorem? The not a root of unity case is the most interesting to me.

This post imported from StackExchange MathOverflow at 2014-09-29 17:32 (UTC), posted by SE-user User1298

retagged Nov 21, 2014
Have you checked out Lam's book "Serre's problem on projective modules" (the 2006 edition)? Chapter VIII (New developments since 1977) contains subsections on non-commutative and quantum versions. I do not have my copy handy, so I can not check right now if your question is answered there...

This post imported from StackExchange MathOverflow at 2014-09-29 17:32 (UTC), posted by SE-user Matthias Wendt
Thanks, but I checked the book and it gives a result only when $N=2$.

This post imported from StackExchange MathOverflow at 2014-09-29 17:32 (UTC), posted by SE-user User1298

These algebras are discussed by Odesskii in his  article on Elliptic Algebras. He states that there is no general result known for $N>3$. This might be a good starting point. (When $N=3$, this is space of vacua for the generic Leigh-Strassler deformation of $\mathcal{N}=4$ supersymmetric Yang-Mills theory.)
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysic$\varnothing$OverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.