Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

145 submissions , 122 unreviewed
3,930 questions , 1,398 unanswered
4,862 answers , 20,637 comments
1,470 users with positive rep
502 active unimported users
More ...

Which values of the Riemann zeta funtion at negative arguments come up in physics?

+ 7 like - 0 dislike
63 views

For my bachelor's thesis, I am investigating Divergent Series. Apart from the mathematical theory behind them (which I find fascinating), I am also interested in their applications in physics.

Currently, I am studying the divergent series that arise when considering the Riemann zeta function at negative arguments. The Riemann zeta function can be analytically continued. By doing this, finite constants can be assigned to the divergent series. For $n \geq 1$, we have the formula:

$$ \zeta(-n) = - \frac{B_{n+1}}{n+1} . $$

This formula can be used to find:

  • $\zeta(-1) = \sum_{n=1}^{\infty} n = - \frac{1}{12} . $ This formula is used in Bosonic String Theory to find the so-called "critical dimension" $d = 26$. For more info, one can consult the relevant wikipedia page.
  • $\zeta(-3) = \sum_{n=1}^{\infty} n^3 = - \frac{1}{120} $ . This identity is used in the calculation of the energy per area between metallic plates that arises in the Casimir Effect.

My first question is: do more of these values of the Riemann zeta function at negative arguments arise in physics? If so: which ones, and in what context?

Furthermore, I consider summing powers of the Riemann zeta function at negative arguments. I try to do this by means of Faulhaber's formula. Let's say, for example, we want to compute the sum of $$p = \Big( \sum_{k=1}^{\infty} k \Big)^3 . $$ If we set $a = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2} $, then from Faulhaber's formula we find that $$\frac{4a^3 - a^2}{3} = 1^5 + 2^5 + 3^5 + \dots + n^5 , $$ from which we can deduce that $$ p = a^3 = \frac{ 3 \cdot \sum_{k=1}^{\infty} k^5 + a^2 }{4} .$$ Since we can also sum the divergent series arising from the Riemann zeta function at negative arguments by means of Ramanujan Summation (which produces that same results as analytic continuation) and the Ramanujan Summation method is linear, we find that the Ramanujan ($R$) or regularised sum of $p$ amounts to $$R(p) = R(a^3) = \frac{3}{4} R\Big(\sum_{k=1}^{\infty} k^5\Big) + \frac{1}{4} R(a^2) . $$ Again, we know from Faulhaber's Formula that $a^2 = \sum_{k=1}^{\infty} k^3 $ , so $R(a^2) = R(\zeta(-3)) = - \frac{1}{120} $, so $$R(p) = \frac{3}{4} \Big(- \frac{1}{252} \Big) + \frac{ ( \frac{1}{120} )} {4} = - \frac{1}{1120} . $$

My second (bunch of) question(s) is: Do powers of these zeta values at negative arguments arise in physics? If so, how? Are they summed in a manner similar to process I just described, or in a different manner? Of the latter is the case, which other summation method is used? Do powers of divergent series arise in physics in general? If so: which ones, and in what context?

My third and last (bunch of) question(s) is: which other divergent series arise in physics (not just considering (powers of) the Riemann zeta function at negative arguments) ? I know there are whole books on renormalisation and/or regularisation in physics. However, for the sake of my bachelor's thesis I would like to know some concrete examples of divergent series that arise in physics which I can study. It would also be nice if you could mention some divergent series which have defied summation by any summation method that physicists (or mathematicians) currently employ. Please also indicate as to how these divergent series arise in physics.

I also posted a somewhat more general and improved version of this question on MO.

This post imported from StackExchange Physics at 2014-04-07 13:21 (UCT), posted by SE-user Max Muller
asked Mar 29, 2014 in Mathematics by Max Muller (115 points) [ no revision ]
retagged Apr 7, 2014

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
$\varnothing\hbar$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...