In the first days of July 1997, after a long driving effort, crossing all of Europe to come to a meeting in Peñiscola, Vladimir Gribov fell fatally sick and he passed away one month later. His paper "*QCD at large and short distances*" was uploaded posthumously to arXiv:hep-ph/9708424 and, in edited version, to arXiv:hep-ph/9807224 one year later. Still a remaining write-up, "*The theory of quark confinement*", was collected, edited and uploaded later to arXiv:hep-ph/9902279.

I guess that I am asking for some general review of these articles, but I am particularly intrigued by the conclusion as it is exposed in the introduction to the first one (bold emphasis is mine).

"The conditions for axial current conservation of ﬂavour non-singlet
currents (in the limit of zero bare quark masses) require that eight
Goldstone bosons (the pseudo-scalar octet) have to be regarded as
**elementary objects** with couplings deﬁned by Ward identities."

"... the ﬂavour singlet pseudoscalar η′ is a "normal bound state of
qq¯ without a **point-like** structure"

How serious is this elementary status? For instance, in order to do calculations of electroweak interaction, should the bosons in the octet be considered as point particles, say in a Lagrangian? Does it imply that the QCD string, at low energy at least, is point-like?

And, does it happen the same for the colored state having two quarks? (What I mean here is the following: the color-neutral states have been produced from the decomposition $3 \times \bar 3 = 8 + 1$ of SU(3) flavour, joining a quark and an antiquark. Similarly, we could use QCD to join two quarks, and then SU(3) flavour should decompose as $3 \times 3 = 6 + 3 $) **Is the flavour sextet "pointlike"**? And the triplet then, is it still a "normal bound state"?

I expect the argument does not depend of the number of flavours, so the same mechanism for SU(5) flavour should produce a point-like color-neutral 24 and, if the answer to the previous question is yes, a point-like colored 15. Is it so?

Let me note that most work on diquarks concludes that only the antisymmetric flavour triplet, not the sextet, is bound by a QCD string --e.g., measured as $\sqrt 3/2$ times the meson string here in PRL 97, 222002 (2006)--.

This post has been migrated from (A51.SE)