Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

Please welcome our new moderators!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

122 submissions , 103 unreviewed
3,497 questions , 1,172 unanswered
4,543 answers , 19,337 comments
1,470 users with positive rep
407 active unimported users
More ...

Why is Standard Model + Loop Quantum Gravity usually not listed as a theory of everything

+ 9 like - 0 dislike
111 views

I have often seeen statements on physics.SE such as,

The only consistent theory of everything which we know of to date (2013) is string theory.

Why exactly is this so? Adding the Loop Quantum Gravity Lagrangian Density (the Einstein-Hilbert-Palatini-Ashtekar lagrangian density) to the Standard Model Lagrnagian Density should be able to describe all the interactions and fermions, in my opinion. Maybe it isn't as elegant as string theory since it doesn't really unify all the forces/interactions and fermions but it is still a complet description, right? Because once the Lagrangian Densities are added, one obtains the following "Complete Lagrangian Density": (please collapse sidebar to view equation properly)  $${{{\cal L}}_{\operatorname{complete}}} = - \frac{1}{4}{H^{\mu \nu \rho }}{H_{\mu \nu \rho }} + i\hbar {c_0}\bar \psi \not \nabla \psi + {c_0}\bar \psi \phi \psi + \operatorname{h.c.} + {\left\| {\not \nabla \phi } \right\|^2} - U\left( \phi \right){\rm{ }}+\Re \left( {\frac{1}{{4\kappa }}\mbox{}^ \pm\Sigma _{IJ}^\mu {{\rm{ }}^ \pm }F_{IJ}^\mu} \right) $$

asked Jun 6, 2013 in Theoretical Physics by dimension10 (1,950 points) [ revision history ]
edited Apr 25, 2014 by dimension10
Most voted comments show all comments
I a not a theorist so can only comment that my impression is that LQG does not respect Lorenz invariance in local spaces. I do not know whether this is evident in the lagrangian you have written. Lets hope somebody in the know will reply to you. Have a look at motls.blogspot.gr/2009/08/…

This post imported from StackExchange Physics at 2014-03-07 13:39 (UCT), posted by SE-user anna v
The arguments on either side are just going to be propaganda and cheerleading. Neither LQG nor ST has made a prediction that can be tested with any known or foreseeable technology, which means that neither is actually a theory yet. Since they're not theories of anything, they're not theories of everything. I'm pretty sure it's false that you can add all the particles of the SM into LQG just by adding Lagrangians; AFAIK this is an unsolved problem in LQG.

This post imported from StackExchange Physics at 2014-03-07 13:39 (UCT), posted by SE-user Ben Crowell
Because the "theory" you write down doesn't exist. It's just an incoherent mixing of apples and oranges. You can't construct a theory by simply throwing random pieces of Lagrangians from different theories as if you throw different things to the trash bin. LQG is inconsistent by itself, for millions of reasons, but even if it weren't, it has many properties that make it incompatible with the SM, for example its Lorentz symmetry violation. And even if these incompatible properties weren't there, adding up several disconnected Lagrangians just isn't a unified theory of anything.

This post imported from StackExchange Physics at 2014-03-07 13:39 (UCT), posted by SE-user Luboš Motl
@Lubos Motl: Thanks.

This post imported from StackExchange Physics at 2014-03-07 13:39 (UCT), posted by SE-user Dimensio1n0
@Luboš that should be an answer

This post imported from StackExchange Physics at 2014-03-07 13:39 (UCT), posted by SE-user David Z
Most recent comments show all comments
I personally would like to know why string theory counts, not why other theories don't.

This post imported from StackExchange Physics at 2014-03-07 13:39 (UCT), posted by SE-user MBN
@Qmechanic and closevoters: I think the as duplicate suggested question is much broader, and that one very specific so they are in my opinion not the same. In addition, such a specific theoretical question should be allowed here, even if the answer to the question might be a nicely explained why from a physics point of view negative one and such a composite Lagrangian does not work. This is no reason to close the question.

This post imported from StackExchange Physics at 2014-03-07 13:39 (UCT), posted by SE-user Dilaton

1 Answer

+ 8 like - 0 dislike

Because the "theory" you write down doesn't exist. It's just a logically incoherent mixture of apples and oranges, using a well-known metaphor.

One can't construct a theory by simply throwing random pieces of Lagrangians taken from different theories as if we were throwing different things to the trash bin.

For numerous reasons, loop quantum gravity has problems with consistency (and ability to produce any large, nearly smooth space at all), but even if it implied the semi-realistic picture of gravity we hear in the most favorable appraisals by its champions, it has many properties that make it incompatible with the Standard Model, for example its Lorentz symmetry violation. This is a serious problem because the terms of the Standard Model are those terms that are renormalizable, Lorentz-invariant, and gauge-invariant. The Lorentz breaking imposed upon us by loop quantum gravity would force us to relax the requirement of the Lorentz invariance for the Standard Model terms as well, so we would have to deal with a much broader theory containing many other terms, not just the Lorentz-invariant ones, and it would simply not be the Standard Model anymore (and if would be infinitely underdetermined, too).

And even if these incompatible properties weren't there, adding up several disconnected Lagrangians just isn't a unified theory of anything.

Two paragraphs above, the incompatibility was presented from the Standard Model's viewpoint – the addition of the dynamical geometry described by loop quantum gravity destroys some important properties of the quantum field theory which prevents us from constructing it. But we may also describe the incompatibility from the – far less reliable – viewpoint of loop quantum gravity. In loop quantum gravity, one describes the spacetime geometry in terms of some other variables you wrote down and one may derive that the areas etc. are effectively quantized so the space – geometrical quantities describing it – are "localized" in some regions of the space (the spin network, spin foam, etc.). This really means that the metric tensor that is needed to write the kinetic and other terms in the Standard Model is singular almost everywhere and can't be differentiated. The Standard Model does depend on the continuous character of the spacetime which loop quantum gravity claims to be violated in Nature. So even if we're neutral about the question whether the space is continuous to allow us to talk about all the derivatives etc., it's true that the two frameworks require contradictory answers to this question.

This post imported from StackExchange Physics at 2014-03-07 13:39 (UCT), posted by SE-user Luboš Motl
answered Jun 6, 2013 by Luboš Motl (10,178 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOverflo$\varnothing$
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...