• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

129 submissions , 109 unreviewed
3,743 questions , 1,307 unanswered
4,705 answers , 19,910 comments
1,470 users with positive rep
460 active unimported users
More ...

About the definition/motivation/properties of the twisted chiral superfield in ${\cal N}=2$ theories in $1+1$ dimensions

+ 2 like - 0 dislike

The following is in the context of the ${\cal N}=2$ supersymmetry in $1+1$ dimensions - which is probably generically constructed as a reduction from the ${\cal N}=1$ case in $3+1$ dimensions.

  • In the $\pm$ notation what is the definition of ${\cal D}_+$ and ${\cal D}_{-}$, which I understand from context to be the gauge covariant superderivatives. (..It would be great if someone can relate them to the usual definition in the notation of say Wess and Bagger..)

  • So what is the meaning/motivation of defining a twisted chiral superfield as, $\Sigma = \{\bar{{\cal D}}_{+}, {\cal D}_{-}\} $ (..naively this looks like an operator and not a field - I guess there is some way of arguing that the derivative terms which are not evaluated on something actually go to zero..)

I am guessing that in the above context it will be helpful if someone can explain as to what is meant by the following decomposition/reduction of the gauge field from $3+1$ dimensions,

$\sum _ {\mu = 0}^3 A_\mu dx^\mu = \sum _{\mu =0} ^1 A_\mu dy^\mu + \sigma (dy^2-idy^3) + \bar{\sigma}(dy^2+idy^3)$ ?

  • From the above (does it/how does it) follow that one can write $\Sigma$ as,

$\Sigma = \sigma + \theta\lambda + \theta \bar{\theta}(F+iD)$

(..where I am not sure if $F,D,\sigma$ are real or complex scalar fields...and $\lambda$ is a Weyl fermion..)

  • What is the R-charge of this twisted chiral super field? (..from some consistency conditions I would think that its 2..but I am not sure..)

I guess that the R-symmetry transformations act as,

  • The "right" R symmetry keeps $\theta^-$s invariant and maps, $\theta^+ \mapsto e^{i\alpha}\theta^+$, $\bar{\theta}^+ \mapsto e^{-i\alpha}\bar{\theta}^+$

  • The "left" R-symmetry keeps $\theta^+$ invariant and maps, $\theta^- \mapsto e^{-i\alpha}\theta^-$, $\bar{\theta}^- \mapsto e^{i\alpha}\bar{\theta}^+$.

Though I am not sure and like to understand as to why one wants to think of these two different R-symmetry groups as having two different origins - one coming from the rotation symmetry of the two spatial dimensions of the original $\cal{N}=1$, $1+3$ theory and another coming from R-symmetry of the $\cal{N}=1$, $U(1)$ gauge theory.

This post has been migrated from (A51.SE)
asked Apr 2, 2012 in Theoretical Physics by Anirbit (585 points) [ no revision ]

1 Answer

+ 0 like - 0 dislike

After dimensional reduction from 4 to 2 dimensions, it is convenient to simply label the last two remaining dimensions as $+$ and $-$ instead of 1 and 2. So, basically you have ${\cal D}_- = {\cal D}_1$ and ${\cal D}_+ = {\cal D}_2$.

As for a motivation for twisted chiral superfields, I'm going to quote Witten [http://arxiv.org/abs/hep-th/9301042]:

Sigma models containing both chiral and twisted chiral superfields are quite lovely. Since mirror symmetry turns chiral multiplets into twisted chiral multiplets, it is likely that consideration of appropriate models containing multiplets of both types is helpful for understanding mirror symmetry.

The introduction given by Witten on twisted chiral superfields in the above paper should cover most of your questions.

I am curious though, where did you find your equations? I'm a bit confused by the F-Term in your twisted chiral superfield, as I thought it was common practice to use the WZ-gauge for these types of fields?

This post has been migrated from (A51.SE)
answered Apr 3, 2012 by Michael Kissner (230 points) [ no revision ]
Thanks for the reply. My notation is that from this lecture of Witten, http://www.math.ias.edu/QFT/spring/witten13.ps. Look at the bottom of page 11 and top of page 12.

This post has been migrated from (A51.SE)
Can you kindly help about the last part of my question about the existence of two "different" R-symmetries. For example isn't there a mismatch between what these two R-transformations do as written in say Page 14 of the paper you have linked to and say, what is there on Page 59 of these notes, http://arxiv.org/pdf/hep-th/0504147v1.pdf. May be if you can make explicit the R-symmetry transformation that is being alluded to in the first paragraph of the "Symmetries" section of the paper that you linked to.

This post has been migrated from (A51.SE)

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights