In derivation of the BdG mean field Hamiltonian as follows, I have a confusion here in the second step:

$H_{MF-eff} = \int d^{3}r\psi_{\uparrow}^{\dagger}(\mathbf{r})H_{E}(\mathbf{r})\psi_{\uparrow}(\mathbf{r})+\int d^{3}r\psi_{\downarrow}^{\dagger}(\mathbf{r})H_{E}(\mathbf{r})\psi_{\downarrow}(\mathbf{r})
+\int d^{3}r\triangle^{\star}(\mathbf{r})\psi_{\downarrow}(\mathbf{r})\psi_{\uparrow}(\mathbf{r})+\int d^{3}r\psi_{\uparrow}^{\dagger}(\mathbf{r})\psi_{\downarrow}^{\dagger}(\mathbf{r})\triangle(\mathbf{r})-\int d^{3}r\frac{|\triangle(\mathbf{r})|^{2}}{U}$
$ = \int d^{3}r\psi_{\uparrow}^{\dagger}(\mathbf{r})H_{E}(\mathbf{r})\psi_{\uparrow}(\mathbf{r})-\int d^{3}r\psi_{\downarrow}(\mathbf{r})H_{E}^{\star}(\mathbf{r})\psi_{\downarrow}^{\dagger}(\mathbf{r})
+\int d^{3}r\triangle^{\star}(\mathbf{r})\psi_{\downarrow}(\mathbf{r})\psi_{\uparrow}(\mathbf{r})+\int d^{3}r\psi_{\uparrow}^{\dagger}(\mathbf{r})\psi_{\downarrow}^{\dagger}(\mathbf{r})\triangle(\mathbf{r})-\int d^{3}r\frac{|\triangle(\mathbf{r})|^{2}}{U}$
$= \int d^{3}r\left(\begin{array}{cc}
\psi_{\uparrow}^{\dagger}(\mathbf{r}) & \psi_{\downarrow}(\mathbf{r})\end{array}\right)\left(\begin{array}{cc}
H_{E}(\mathbf{r}) & \triangle(\mathbf{r})\\
\triangle^{\star}(\mathbf{r}) & -H_{E}^{\star}(\mathbf{r})
\end{array}\right)\left(\begin{array}{c}
\psi_{\uparrow}(\mathbf{r})\\
\psi_{\downarrow}^{\dagger}(\mathbf{r})
\end{array}\right)+const.
$

with

$H_{E}(\mathbf{r})=\frac{-\hbar^{2}}{2m}\nabla^{2}$

In the second step, we have taken

$\int d^{3}r\psi_{\downarrow}^{\dagger}(\mathbf{r})\nabla^{2}\psi_{\downarrow}(\mathbf{r}) = -\int d^{3}r\psi_{\downarrow}(\mathbf{r})\nabla^{2}\psi_{\downarrow}^{\dagger}(\mathbf{r})$............(1).

I can prove (by integration by parts and putting the surface terms to 0) that $\int d^{3}r\psi_{\downarrow}^{\dagger}(\mathbf{r})\nabla^{2}\psi_{\downarrow}(\mathbf{r}) = \int d^{3}r \nabla^{2}\psi_{\downarrow}^{\dagger}(\mathbf{r})\psi_{\downarrow}(\mathbf{r})$

but how is it justified to now take

$\int d^{3}r \nabla^{2}\psi_{\downarrow}^{\dagger}(\mathbf{r})\psi_{\downarrow}(\mathbf{r}) = - \int d^{3}r\psi_{\downarrow}(\mathbf{r})\nabla^{2}\psi_{\downarrow}^{\dagger}(\mathbf{r})$

in order to prove (1) ?

This post imported from StackExchange Physics at 2014-03-23 12:23 (UCT), posted by SE-user user38579