• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

174 submissions , 137 unreviewed
4,308 questions , 1,640 unanswered
5,089 answers , 21,602 comments
1,470 users with positive rep
635 active unimported users
More ...

  Question about simple permutation of covariant derivatives

+ 3 like - 0 dislike

I must to compute value $$ [[D_{\mu}, D_{\nu}],D_{\lambda}]A^{\rho}. $$ It is equal to $$ [D_{\mu}, D_{\nu}]D_{\lambda}A^{\rho} - D_{\lambda} ([D_{\mu}, D_{\nu}]])A^{\rho} - [D_{\mu}, D_{\nu}]D_{\lambda}A^{\rho} = -D_{\lambda} ([D_{\mu}, D_{\nu}])A^{\rho}. $$ So, the question: can I formally take $A^{\rho}$ under the sign of the derivative for using the identity $[D_{\mu}, D_{\nu}]A^{\rho} = R^{\rho}_{\quad \sigma \mu \nu}A^{\sigma}$ and, afer that, take $A^{\sigma}$ outside the derivative? I'm afraid that no, but I hope that it is possible.

This post imported from StackExchange Physics at 2014-03-05 14:53 (UCT), posted by SE-user Andrew McAddams
asked Nov 22, 2013 in Theoretical Physics by Andrew McAddams (340 points) [ no revision ]

1 Answer

+ 1 like - 0 dislike

$[[D_{\mu}, D_{\nu}],D_{\lambda}]A^{\rho} = [D_{\mu}, D_{\nu}]D_{\lambda}A^{\rho}-D_{\lambda}[D_{\mu}, D_{\nu}]A^{\rho}$

$=-R^{\tau}_{{\lambda}\mu \nu}D_{\tau}A^{\rho}+R^{\rho}_{\sigma \mu \nu}D_{\lambda}A^{\sigma}- D_{\lambda}(R^{\rho}_{\sigma \mu \nu}A^{\sigma})$

$=-R^{\tau}_{{\lambda}\mu \nu}D_{\tau}A^{\rho}+ R^{\rho}_{\sigma \mu \nu ; \lambda}A^{\sigma}$

When you cycle over $\mu, \nu, \lambda$ you will need/get the first and second bianchi identities

1st BI: $R^{\tau}_{ \mu \nu \lambda}+ R^{\tau}_{\lambda \mu \nu }+ R^{\tau}_{\nu \lambda \mu } = 0$

2nd BI: $R^{\rho}_{\sigma \mu \nu ; \lambda}+R^{\rho}_{\sigma \lambda \mu ; \nu}+R^{\rho}_{\sigma \nu \lambda ; \mu}=0$

This post imported from StackExchange Physics at 2014-03-05 14:53 (UCT), posted by SE-user Philip Gibbs
answered Nov 22, 2013 by Philip Gibbs (650 points) [ no revision ]

Please log in or register to answer this question.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights