Any good book on statistical field theory and critical phenomena will have a chapter on large N. See for instance Zinn-Justin's book.

Keep in mind that the large N approximation is a special kind of mean-field theory (since it is both self-consistent and exact in large $N$). It is thus quite different from the usual mean-field theory use for example in the case of the Ising model.

It is called mean-field because one only have to minimize the action without computing any corrections (which are of order $1/N$). But the equation is self-consistent, contrary to the usual mean-field theory.

To summarize : for the $O(N)$ model, with $N\to\infty$, one could use the usual mean-field, or the "large $N$ mean-field". The results would not be the same, as the former is approximate but the latter is exact.

In principle, you can also use the large $N$ results to finite $N$, even though it is not exact in that case (but sometimes $3\gg1$). But it definitely does not work for the Ising model ($N=1$). Indeed, the large $N$ approach use the fact that the Goldstone modes (the $\pi_i$) dominate the physics compare to the fluctuation of $\sigma$ (because there is an infinite number of Goldstone modes compare to one $\sigma$). But in the Ising case, the only mode is always gapped (away from criticality), so the results of the large $N$ is non-sense.

This post imported from StackExchange Physics at 2014-03-05 14:32 (UCT), posted by SE-user Adam