Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

(propose a free ad)

With the quantification of the theory of the complex time, I can predict the existence of a particule, the transion, whose mass is given by the formula:

$$m_T=\frac{\hbar}{\sqrt{c^3.R}}$$

where $\hbar$ is the Planck constant, $c$ is the speed of the light and $R$ is the constant of the complex time theory.

Can we mesurate the mass of the transion?

Units?

What do you mean by the theory of the complex time? What do you mean by quantising this theory?

The concept of a particle is not always so straightforward, e.g. in curved spacetime. To what extent it is viable in case of a complex time remains to be clarified and will probably depend on further details of your theory.

As for measurement of the mass, this will depend on the interactions of your hypothetical particle.

As commented on a different one of your recent questions, complex time appears to be rather a problematic concept physically.

user contributions licensed under cc by-sa 3.0 with attribution required