**Dose Einstein's B coefficient determine the value of alpha?**

Einstein's B coefficient can be expressed as oscillator strength - \(f\) (a dimensionless value that expresses the probability transitions between energy levels).

\(B_x=\frac{c^3}{h\;\nu^2_x}= \frac{k_e\;e^2}{m_e\;h\;\upsilon_{x}}\;f\)

Solving for oscillator strength in terms of frequency we get;

\(f =\frac{m_e\;c^3}{k_e\;e^2}\frac{1}{\upsilon_x}=\left[\frac{\alpha_G^{0.5}}{\alpha} \nu_P\right]\frac{1}{\nu_x}=\frac{1.1\times 10^{23}}{\upsilon_x}\)

By oscillating the B coefficient's radiation field at specific frequencies we obtain;

*Compton Frequency*

\(\bar{\upsilon}_C\;\;{then}\;\;\;f_C=\frac{1}{\alpha}\)

**Electron B**_{e} Frequency

\(\upsilon_{B_e}\;\;{then}\;\;\;f_{B_e}={\sqrt{\alpha}}\)

**Planck Frequency**

\(\upsilon_P\;\;{then}\;\;\;f_P=\frac{\sqrt{\alpha_G}}{\alpha}\)

From the above the value alpha is a resonant frequency of Einstein's B coefficient radiation field.

Another resonant frequency of Einstein's B coefficient radiation field generates a gravitational field.

**Note**

\(B_{e}=\dfrac{r_{e}}{m_{e}}=\dfrac{c^{3}}{h\;\nu^2_e}\)