Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

183 submissions , 143 unreviewed
4,697 questions , 1,909 unanswered
5,255 answers , 22,428 comments
1,470 users with positive rep
741 active unimported users
More ...

  The argument for asymptotic freedom for the Heisenberg model

+ 1 like - 0 dislike
2664 views

One possible argument for asymptotic freedom in the 2D O(3) ferromagnetic Heisenberg model is the existence of so-called instantons, discovered in the 1975 paper of Belavin and Polyakov. This is supposedly a simpler but similar-mechanism for asymptotic freedom in the the 4D SU(2) Yang-Mills gauge theory--also via instantons.

They write "we have thus proved that a ferromagnet has inhomogeneous metastable states. This apparently means that there is a finite correlation length in the system and there is no phase transition even at very low temperatures."

Can anyone explain a bit more about why the existence of these metastable solutions (i.e. classical solutions of the equations of motion, or local extrema of the action, which however have arbitrarily high energy) directly imply finite correlation length at all temperatures? I am aware of the 1975 paper by Polyakov where he lays an argument for that using renormalization group analysis, but if I understand correctly that uses an entirely different logic.

Also: the 2D $O(4)$ Heisenberg model supposedly has no such topological solutions, since $\pi_2(\mathbb{S}^3)=\{0\}$. But that apparently does not mean that it has a phase transition, right? I am not aware anyone claims the 2D $O(4)$ model has no mass gap. So is it the case that for $O(3)$ there happens to be, accidentally, an easier way to show asymptotic freedom using these instantons, but in principle the more robust argument that works for all $O(N)$, $N>2$ is the renormalization group argument?

asked Feb 9 in Theoretical Physics by PPR (135 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
$\varnothing\hbar$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...