Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,047 questions , 2,200 unanswered
5,345 answers , 22,709 comments
1,470 users with positive rep
816 active unimported users
More ...

  How can we deal with a singular integral equation where the singular kernel is sum of Cauchy and Hilbert kernels

+ 1 like - 0 dislike
1241 views

In the context of studying the eigenvalue distribution of Matrix Models, one encounters integral equations which needs to be solved in order to obtain the eigenvalue density in the Large $N$ limit. To be more precise, referring to: https://arxiv.org/pdf/hep-th/0410165.pdf , what I am talking about is essentially Eqn. (2.47). Given the potential of the matrix model i.e $W(\lambda)$, one needs to solve for $\rho(\lambda)$. This is done by defining the resolvent at zero genus according to Eqn (2.56) and subsequently evaluating Eqn (2.60) to get a closed form expression for the genus zero resolvent ($\omega_0$) . Finally using Eqn (2.58), it is easy to determine the discontinuity in the resolvent across the relevant branch cut. This gives the eigenvalue density.

However, the case I'm looking at does not have an effective action of the form given in Eqn (2.41). This changes things significantly. Instead the singular kernel that I have is the sum of the Cauchy kernel (just discussed above) and the Hilbert kernel ($~\cot (\frac{\lambda-\lambda'}{2})$). Overall, the eigenvalue density can be determined from the equation:

\[\Pr \int_a^b d\lambda' \rho(\lambda')\left[ \frac{1}{\lambda-\lambda'}+\frac{t}{2}\cot\left(\frac{t(\lambda-\lambda')}{2}\right)\right]=G(\lambda)\]where Pr denotes the principal value of the integral. $G(\lambda)$ is a known function and $t>0$ is a constant.

My questions are the following:

1) Is there an expression for the "resolvent" for the above class of singular integral equations?

2) The Hilbert kernel seems to be defined when the range of the integral $[a,b] \equiv [0,2\pi]$. Does this put some kind of bound on $a$ and $b$.

Thanks in advance. 

asked Oct 7, 2020 in Mathematics by DebangshuMukherjee (165 points) [ revision history ]
edited Oct 7, 2020 by DebangshuMukherjee

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysi$\varnothing$sOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...