# How to find the stationary and time dependent solution of pauli master equation

+ 1 like - 0 dislike
807 views

\begin{align*}
\frac{d}{d\tau}\hat{\rho}(\tau)
&=-i(\omega)[\hat{a}^\dagger\hat{a},\hat{\rho}_S(\tau)]+\Gamma_0\Big( N(\omega)+1 \Big)\Big(\hat{a}\hat{\rho}_S(\tau)\hat{a}^\dagger-\frac{1}{2} \hat{a}^\dagger\hat{a}\hat{\rho}_S(\tau)-\frac{1}{2}\hat{\rho}_S(\tau)\hat{a}^\dagger\hat{a}\Big)+\\
& +\Gamma_0N(\omega) \Big(\hat{a}^\dagger\hat{\rho}_S(\tau)\hat{a}-\frac{1}{2}\hat{a}\hat{a}^\dagger\hat{\rho}_S(\tau)-\frac{1}{2}\hat{\rho}_S(\tau)\hat{a}\hat{a}^\dagger\Big)
\end{align*}
From master equation we find the probabilities $P(n,\tau)=<{n|\rho|n}>$ for the oscillator to be in n-th energy eigenstate, namely the Pauli master equation
\begin{align*}
\dot{P}(n,\tau)&=\Gamma_0\Big( N(\omega)+1 \Big)\Big((n+1)P(n+1,\tau) -nP(n,\tau)\Big)+\\
&+\Gamma_0N(\omega)\Big(nP(n-1,\tau)-(n+1)P(n,\tau)\Big)
\end{align*}
according to Petruccione the stationary solution is
\begin{align*}
P_{s}(n)&=\frac{1}{N(\omega)+1}\Bigg(\frac{N(\omega)}{N(\omega)+1}\Bigg)^n
\end{align*}
I am trying to show the above result as well as to find the $\rho(\tau)$but i find different solution. The method that i use is discrete equations second order. First  I solve

\begin{align*}
0&=\Gamma_0\Big( N(\omega)+1 \Big)\Big((n+1)P(n+1,\tau) -nP(n,\tau)\Big)+\\
&+\Gamma_0N(\omega)\Big(nP(n-1,\tau)-(n+1)P(n,\tau)\Big)
\end{align*}

and I find

\begin{align*}
P_{t}(n)&=c_1\Bigg(\frac{N(\omega)}{N(\omega)+1}\Bigg)^n+c_2\Bigg(\frac{n+1}{n+2}\Bigg)^n
\end{align*}

then

\begin{align*}
\dot{P}(n,\tau)&=P_{t}(n)
\end{align*}

but nothing

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOve$\varnothing$flowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). Please complete the anti-spam verification